Metamath Proof Explorer


Theorem dplti

Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dplti.a A0
dplti.b B+
dplti.c C0
dplti.1 B<10
dplti.2 A+1=C
Assertion dplti A.B<C

Proof

Step Hyp Ref Expression
1 dplti.a A0
2 dplti.b B+
3 dplti.c C0
4 dplti.1 B<10
5 dplti.2 A+1=C
6 rpre B+B
7 2 6 ax-mp B
8 1 7 dpval2 A.B=A+B10
9 10re 10
10 10pos 0<10
11 9 10 pm3.2i 100<10
12 elrp 10+100<10
13 11 12 mpbir 10+
14 divlt1lt B10+B10<1B<10
15 7 13 14 mp2an B10<1B<10
16 4 15 mpbir B10<1
17 0re 0
18 17 10 gtneii 100
19 7 9 18 redivcli B10
20 1re 1
21 nn0ssre 0
22 21 1 sselii A
23 19 20 22 ltadd2i B10<1A+B10<A+1
24 16 23 mpbi A+B10<A+1
25 8 24 eqbrtri A.B<A+1
26 25 5 breqtri A.B<C