Metamath Proof Explorer


Theorem dropab2

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab2
|- ( A. x x = y -> { <. z , x >. | ph } = { <. z , y >. | ph } )

Proof

Step Hyp Ref Expression
1 opeq2
 |-  ( x = y -> <. z , x >. = <. z , y >. )
2 1 sps
 |-  ( A. x x = y -> <. z , x >. = <. z , y >. )
3 2 eqeq2d
 |-  ( A. x x = y -> ( w = <. z , x >. <-> w = <. z , y >. ) )
4 3 anbi1d
 |-  ( A. x x = y -> ( ( w = <. z , x >. /\ ph ) <-> ( w = <. z , y >. /\ ph ) ) )
5 4 drex1
 |-  ( A. x x = y -> ( E. x ( w = <. z , x >. /\ ph ) <-> E. y ( w = <. z , y >. /\ ph ) ) )
6 5 drex2
 |-  ( A. x x = y -> ( E. z E. x ( w = <. z , x >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ ph ) ) )
7 6 abbidv
 |-  ( A. x x = y -> { w | E. z E. x ( w = <. z , x >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ ph ) } )
8 df-opab
 |-  { <. z , x >. | ph } = { w | E. z E. x ( w = <. z , x >. /\ ph ) }
9 df-opab
 |-  { <. z , y >. | ph } = { w | E. z E. y ( w = <. z , y >. /\ ph ) }
10 7 8 9 3eqtr4g
 |-  ( A. x x = y -> { <. z , x >. | ph } = { <. z , y >. | ph } )