Step |
Hyp |
Ref |
Expression |
1 |
|
opeq2 |
|- ( x = y -> <. z , x >. = <. z , y >. ) |
2 |
1
|
sps |
|- ( A. x x = y -> <. z , x >. = <. z , y >. ) |
3 |
2
|
eqeq2d |
|- ( A. x x = y -> ( w = <. z , x >. <-> w = <. z , y >. ) ) |
4 |
3
|
anbi1d |
|- ( A. x x = y -> ( ( w = <. z , x >. /\ ph ) <-> ( w = <. z , y >. /\ ph ) ) ) |
5 |
4
|
drex1 |
|- ( A. x x = y -> ( E. x ( w = <. z , x >. /\ ph ) <-> E. y ( w = <. z , y >. /\ ph ) ) ) |
6 |
5
|
drex2 |
|- ( A. x x = y -> ( E. z E. x ( w = <. z , x >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ ph ) ) ) |
7 |
6
|
abbidv |
|- ( A. x x = y -> { w | E. z E. x ( w = <. z , x >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ ph ) } ) |
8 |
|
df-opab |
|- { <. z , x >. | ph } = { w | E. z E. x ( w = <. z , x >. /\ ph ) } |
9 |
|
df-opab |
|- { <. z , y >. | ph } = { w | E. z E. y ( w = <. z , y >. /\ ph ) } |
10 |
7 8 9
|
3eqtr4g |
|- ( A. x x = y -> { <. z , x >. | ph } = { <. z , y >. | ph } ) |