| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq2 |  |-  ( x = y -> <. z , x >. = <. z , y >. ) | 
						
							| 2 | 1 | sps |  |-  ( A. x x = y -> <. z , x >. = <. z , y >. ) | 
						
							| 3 | 2 | eqeq2d |  |-  ( A. x x = y -> ( w = <. z , x >. <-> w = <. z , y >. ) ) | 
						
							| 4 | 3 | anbi1d |  |-  ( A. x x = y -> ( ( w = <. z , x >. /\ ph ) <-> ( w = <. z , y >. /\ ph ) ) ) | 
						
							| 5 | 4 | drex1 |  |-  ( A. x x = y -> ( E. x ( w = <. z , x >. /\ ph ) <-> E. y ( w = <. z , y >. /\ ph ) ) ) | 
						
							| 6 | 5 | drex2 |  |-  ( A. x x = y -> ( E. z E. x ( w = <. z , x >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ ph ) ) ) | 
						
							| 7 | 6 | abbidv |  |-  ( A. x x = y -> { w | E. z E. x ( w = <. z , x >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ ph ) } ) | 
						
							| 8 |  | df-opab |  |-  { <. z , x >. | ph } = { w | E. z E. x ( w = <. z , x >. /\ ph ) } | 
						
							| 9 |  | df-opab |  |-  { <. z , y >. | ph } = { w | E. z E. y ( w = <. z , y >. /\ ph ) } | 
						
							| 10 | 7 8 9 | 3eqtr4g |  |-  ( A. x x = y -> { <. z , x >. | ph } = { <. z , y >. | ph } ) |