Metamath Proof Explorer


Theorem dtru

Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Note that we may not substitute the same variable for both x and y (as indicated by the distinct variable requirement), for otherwise we would contradict stdpc6 .

This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext or ax-sep . See dtruALT for a shorter proof using these axioms.

The proof makes use of dummy variables z and w which do not appear in the final theorem. They must be distinct from each other and from x and y . In other words, if we were to substitute x for z throughout the proof, the proof would fail. (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by Gino Giotto, 5-Sep-2023) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024)

Ref Expression
Assertion dtru
|- -. A. x x = y

Proof

Step Hyp Ref Expression
1 el
 |-  E. w x e. w
2 ax-nul
 |-  E. z A. x -. x e. z
3 elequ1
 |-  ( x = w -> ( x e. z <-> w e. z ) )
4 3 notbid
 |-  ( x = w -> ( -. x e. z <-> -. w e. z ) )
5 4 spw
 |-  ( A. x -. x e. z -> -. x e. z )
6 2 5 eximii
 |-  E. z -. x e. z
7 exdistrv
 |-  ( E. w E. z ( x e. w /\ -. x e. z ) <-> ( E. w x e. w /\ E. z -. x e. z ) )
8 1 6 7 mpbir2an
 |-  E. w E. z ( x e. w /\ -. x e. z )
9 ax9v2
 |-  ( w = z -> ( x e. w -> x e. z ) )
10 9 com12
 |-  ( x e. w -> ( w = z -> x e. z ) )
11 10 con3dimp
 |-  ( ( x e. w /\ -. x e. z ) -> -. w = z )
12 11 2eximi
 |-  ( E. w E. z ( x e. w /\ -. x e. z ) -> E. w E. z -. w = z )
13 equequ2
 |-  ( z = y -> ( w = z <-> w = y ) )
14 13 notbid
 |-  ( z = y -> ( -. w = z <-> -. w = y ) )
15 ax7v1
 |-  ( x = w -> ( x = y -> w = y ) )
16 15 con3d
 |-  ( x = w -> ( -. w = y -> -. x = y ) )
17 16 spimevw
 |-  ( -. w = y -> E. x -. x = y )
18 14 17 syl6bi
 |-  ( z = y -> ( -. w = z -> E. x -. x = y ) )
19 ax7v1
 |-  ( x = z -> ( x = y -> z = y ) )
20 19 con3d
 |-  ( x = z -> ( -. z = y -> -. x = y ) )
21 20 spimevw
 |-  ( -. z = y -> E. x -. x = y )
22 21 a1d
 |-  ( -. z = y -> ( -. w = z -> E. x -. x = y ) )
23 18 22 pm2.61i
 |-  ( -. w = z -> E. x -. x = y )
24 23 exlimivv
 |-  ( E. w E. z -. w = z -> E. x -. x = y )
25 8 12 24 mp2b
 |-  E. x -. x = y
26 exnal
 |-  ( E. x -. x = y <-> -. A. x x = y )
27 25 26 mpbi
 |-  -. A. x x = y