| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zabscl |  |-  ( M e. ZZ -> ( abs ` M ) e. ZZ ) | 
						
							| 2 | 1 | 3anim1i |  |-  ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) | 
						
							| 4 |  | absdvdsb |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N <-> ( abs ` M ) || N ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( abs ` M ) || N ) | 
						
							| 7 |  | dvdsleabs |  |-  ( ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( abs ` M ) || N -> ( abs ` M ) <_ ( abs ` N ) ) ) | 
						
							| 8 | 3 6 7 | sylc |  |-  ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( abs ` M ) <_ ( abs ` N ) ) | 
						
							| 9 | 8 | ex |  |-  ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |