| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
| 4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
| 5 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D ( x e. X |-> A ) ) : dom ( S _D ( x e. X |-> A ) ) --> CC ) |
| 6 |
1 5
|
syl |
|- ( ph -> ( S _D ( x e. X |-> A ) ) : dom ( S _D ( x e. X |-> A ) ) --> CC ) |
| 7 |
4
|
dmeqd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 8 |
3
|
ralrimiva |
|- ( ph -> A. x e. X B e. V ) |
| 9 |
|
dmmptg |
|- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
| 10 |
8 9
|
syl |
|- ( ph -> dom ( x e. X |-> B ) = X ) |
| 11 |
7 10
|
eqtrd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 12 |
11
|
feq2d |
|- ( ph -> ( ( S _D ( x e. X |-> A ) ) : dom ( S _D ( x e. X |-> A ) ) --> CC <-> ( S _D ( x e. X |-> A ) ) : X --> CC ) ) |
| 13 |
6 12
|
mpbid |
|- ( ph -> ( S _D ( x e. X |-> A ) ) : X --> CC ) |
| 14 |
4
|
feq1d |
|- ( ph -> ( ( S _D ( x e. X |-> A ) ) : X --> CC <-> ( x e. X |-> B ) : X --> CC ) ) |
| 15 |
13 14
|
mpbid |
|- ( ph -> ( x e. X |-> B ) : X --> CC ) |
| 16 |
15
|
fvmptelcdm |
|- ( ( ph /\ x e. X ) -> B e. CC ) |