Description: Conjunction form of e02 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | e02an.1 | |- ph |
|
e02an.2 | |- (. ps ,. ch ->. th ). |
||
e02an.3 | |- ( ( ph /\ th ) -> ta ) |
||
Assertion | e02an | |- (. ps ,. ch ->. ta ). |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e02an.1 | |- ph |
|
2 | e02an.2 | |- (. ps ,. ch ->. th ). |
|
3 | e02an.3 | |- ( ( ph /\ th ) -> ta ) |
|
4 | 3 | ex | |- ( ph -> ( th -> ta ) ) |
5 | 1 2 4 | e02 | |- (. ps ,. ch ->. ta ). |