Metamath Proof Explorer


Theorem e02

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e02.1
|- ph
e02.2
|- (. ps ,. ch ->. th ).
e02.3
|- ( ph -> ( th -> ta ) )
Assertion e02
|- (. ps ,. ch ->. ta ).

Proof

Step Hyp Ref Expression
1 e02.1
 |-  ph
2 e02.2
 |-  (. ps ,. ch ->. th ).
3 e02.3
 |-  ( ph -> ( th -> ta ) )
4 1 vd02
 |-  (. ps ,. ch ->. ph ).
5 4 2 3 e22
 |-  (. ps ,. ch ->. ta ).