Metamath Proof Explorer


Theorem e02

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e02.1 𝜑
e02.2 (    𝜓    ,    𝜒    ▶    𝜃    )
e02.3 ( 𝜑 → ( 𝜃𝜏 ) )
Assertion e02 (    𝜓    ,    𝜒    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e02.1 𝜑
2 e02.2 (    𝜓    ,    𝜒    ▶    𝜃    )
3 e02.3 ( 𝜑 → ( 𝜃𝜏 ) )
4 1 vd02 (    𝜓    ,    𝜒    ▶    𝜑    )
5 4 2 3 e22 (    𝜓    ,    𝜒    ▶    𝜏    )