Metamath Proof Explorer


Theorem e20

Description: A virtual deduction elimination rule (see syl6mpi ). (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e20.1
|- (. ph ,. ps ->. ch ).
e20.2
|- th
e20.3
|- ( ch -> ( th -> ta ) )
Assertion e20
|- (. ph ,. ps ->. ta ).

Proof

Step Hyp Ref Expression
1 e20.1
 |-  (. ph ,. ps ->. ch ).
2 e20.2
 |-  th
3 e20.3
 |-  ( ch -> ( th -> ta ) )
4 2 vd02
 |-  (. ph ,. ps ->. th ).
5 1 4 3 e22
 |-  (. ph ,. ps ->. ta ).