Metamath Proof Explorer


Theorem e20an

Description: Conjunction form of e20 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e20an.1
|- (. ph ,. ps ->. ch ).
e20an.2
|- th
e20an.3
|- ( ( ch /\ th ) -> ta )
Assertion e20an
|- (. ph ,. ps ->. ta ).

Proof

Step Hyp Ref Expression
1 e20an.1
 |-  (. ph ,. ps ->. ch ).
2 e20an.2
 |-  th
3 e20an.3
 |-  ( ( ch /\ th ) -> ta )
4 3 ex
 |-  ( ch -> ( th -> ta ) )
5 1 2 4 e20
 |-  (. ph ,. ps ->. ta ).