Metamath Proof Explorer


Theorem e30

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e30.1
|- (. ph ,. ps ,. ch ->. th ).
e30.2
|- ta
e30.3
|- ( th -> ( ta -> et ) )
Assertion e30
|- (. ph ,. ps ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e30.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 e30.2
 |-  ta
3 e30.3
 |-  ( th -> ( ta -> et ) )
4 2 vd03
 |-  (. ph ,. ps ,. ch ->. ta ).
5 1 4 3 e33
 |-  (. ph ,. ps ,. ch ->. et ).