Metamath Proof Explorer


Theorem e30

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e30.1 φ , ψ , χ θ
e30.2 τ
e30.3 θ τ η
Assertion e30 φ , ψ , χ η

Proof

Step Hyp Ref Expression
1 e30.1 φ , ψ , χ θ
2 e30.2 τ
3 e30.3 θ τ η
4 2 vd03 φ , ψ , χ τ
5 1 4 3 e33 φ , ψ , χ η