| Step |
Hyp |
Ref |
Expression |
| 1 |
|
e333.1 |
|- (. ph ,. ps ,. ch ->. th ). |
| 2 |
|
e333.2 |
|- (. ph ,. ps ,. ch ->. ta ). |
| 3 |
|
e333.3 |
|- (. ph ,. ps ,. ch ->. et ). |
| 4 |
|
e333.4 |
|- ( th -> ( ta -> ( et -> ze ) ) ) |
| 5 |
3
|
dfvd3i |
|- ( ph -> ( ps -> ( ch -> et ) ) ) |
| 6 |
5
|
3imp |
|- ( ( ph /\ ps /\ ch ) -> et ) |
| 7 |
1
|
dfvd3i |
|- ( ph -> ( ps -> ( ch -> th ) ) ) |
| 8 |
7
|
3imp |
|- ( ( ph /\ ps /\ ch ) -> th ) |
| 9 |
2
|
dfvd3i |
|- ( ph -> ( ps -> ( ch -> ta ) ) ) |
| 10 |
9
|
3imp |
|- ( ( ph /\ ps /\ ch ) -> ta ) |
| 11 |
8 10 4
|
syl2im |
|- ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) ) |
| 12 |
11
|
pm2.43i |
|- ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) |
| 13 |
6 12
|
syl5com |
|- ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ze ) ) |
| 14 |
13
|
pm2.43i |
|- ( ( ph /\ ps /\ ch ) -> ze ) |
| 15 |
14
|
3exp |
|- ( ph -> ( ps -> ( ch -> ze ) ) ) |
| 16 |
15
|
dfvd3ir |
|- (. ph ,. ps ,. ch ->. ze ). |