| Step | Hyp | Ref | Expression | 
						
							| 1 |  | e333.1 |  |-  (. ph ,. ps ,. ch ->. th ). | 
						
							| 2 |  | e333.2 |  |-  (. ph ,. ps ,. ch ->. ta ). | 
						
							| 3 |  | e333.3 |  |-  (. ph ,. ps ,. ch ->. et ). | 
						
							| 4 |  | e333.4 |  |-  ( th -> ( ta -> ( et -> ze ) ) ) | 
						
							| 5 | 3 | dfvd3i |  |-  ( ph -> ( ps -> ( ch -> et ) ) ) | 
						
							| 6 | 5 | 3imp |  |-  ( ( ph /\ ps /\ ch ) -> et ) | 
						
							| 7 | 1 | dfvd3i |  |-  ( ph -> ( ps -> ( ch -> th ) ) ) | 
						
							| 8 | 7 | 3imp |  |-  ( ( ph /\ ps /\ ch ) -> th ) | 
						
							| 9 | 2 | dfvd3i |  |-  ( ph -> ( ps -> ( ch -> ta ) ) ) | 
						
							| 10 | 9 | 3imp |  |-  ( ( ph /\ ps /\ ch ) -> ta ) | 
						
							| 11 | 8 10 4 | syl2im |  |-  ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) ) | 
						
							| 12 | 11 | pm2.43i |  |-  ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) | 
						
							| 13 | 6 12 | syl5com |  |-  ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ze ) ) | 
						
							| 14 | 13 | pm2.43i |  |-  ( ( ph /\ ps /\ ch ) -> ze ) | 
						
							| 15 | 14 | 3exp |  |-  ( ph -> ( ps -> ( ch -> ze ) ) ) | 
						
							| 16 | 15 | dfvd3ir |  |-  (. ph ,. ps ,. ch ->. ze ). |