| Step |
Hyp |
Ref |
Expression |
| 1 |
|
e333.1 |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| 2 |
|
e333.2 |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜏 ) |
| 3 |
|
e333.3 |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
| 4 |
|
e333.4 |
⊢ ( 𝜃 → ( 𝜏 → ( 𝜂 → 𝜁 ) ) ) |
| 5 |
3
|
dfvd3i |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜂 ) ) ) |
| 6 |
5
|
3imp |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜂 ) |
| 7 |
1
|
dfvd3i |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) |
| 8 |
7
|
3imp |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 9 |
2
|
dfvd3i |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜏 ) ) ) |
| 10 |
9
|
3imp |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜏 ) |
| 11 |
8 10 4
|
syl2im |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜂 → 𝜁 ) ) ) |
| 12 |
11
|
pm2.43i |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜂 → 𝜁 ) ) |
| 13 |
6 12
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜁 ) ) |
| 14 |
13
|
pm2.43i |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜁 ) |
| 15 |
14
|
3exp |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜁 ) ) ) |
| 16 |
15
|
dfvd3ir |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) |