Description: The restricted converse epsilon coset of an element of the restriction is the element itself. (Contributed by Peter Mazsa, 16-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eccnvepres2 | |- ( B e. A -> [ B ] ( `' _E |` A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecres2 | |- ( B e. A -> [ B ] ( `' _E |` A ) = [ B ] `' _E ) |
|
2 | eccnvep | |- ( B e. A -> [ B ] `' _E = B ) |
|
3 | 1 2 | eqtrd | |- ( B e. A -> [ B ] ( `' _E |` A ) = B ) |