Description: The restricted converse epsilon coset of an element of the restriction is the element itself. (Contributed by Peter Mazsa, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eccnvepres2 | |- ( B e. A -> [ B ] ( `' _E |` A ) = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecres2 | |- ( B e. A -> [ B ] ( `' _E |` A ) = [ B ] `' _E ) | |
| 2 | eccnvep | |- ( B e. A -> [ B ] `' _E = B ) | |
| 3 | 1 2 | eqtrd | |- ( B e. A -> [ B ] ( `' _E |` A ) = B ) |