Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eccnvepres3 | |- ( B e. dom ( `' _E |` A ) -> [ B ] ( `' _E |` A ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres | |- ( `' _E |` dom ( `' _E |` A ) ) = ( `' _E |` A ) |
|
2 | 1 | eceq2i | |- [ B ] ( `' _E |` dom ( `' _E |` A ) ) = [ B ] ( `' _E |` A ) |
3 | eccnvepres2 | |- ( B e. dom ( `' _E |` A ) -> [ B ] ( `' _E |` dom ( `' _E |` A ) ) = B ) |
|
4 | 2 3 | eqtr3id | |- ( B e. dom ( `' _E |` A ) -> [ B ] ( `' _E |` A ) = B ) |