Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eccnvepres3 | ⊢ ( 𝐵 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝐵 ] ( ◡ E ↾ 𝐴 ) = 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resdmres | ⊢ ( ◡ E ↾ dom ( ◡ E ↾ 𝐴 ) ) = ( ◡ E ↾ 𝐴 ) | |
| 2 | 1 | eceq2i | ⊢ [ 𝐵 ] ( ◡ E ↾ dom ( ◡ E ↾ 𝐴 ) ) = [ 𝐵 ] ( ◡ E ↾ 𝐴 ) | 
| 3 | eccnvepres2 | ⊢ ( 𝐵 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝐵 ] ( ◡ E ↾ dom ( ◡ E ↾ 𝐴 ) ) = 𝐵 ) | |
| 4 | 2 3 | eqtr3id | ⊢ ( 𝐵 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝐵 ] ( ◡ E ↾ 𝐴 ) = 𝐵 ) |