Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eccnvepres3 | ⊢ ( 𝐵 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝐵 ] ( ◡ E ↾ 𝐴 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres | ⊢ ( ◡ E ↾ dom ( ◡ E ↾ 𝐴 ) ) = ( ◡ E ↾ 𝐴 ) | |
2 | 1 | eceq2i | ⊢ [ 𝐵 ] ( ◡ E ↾ dom ( ◡ E ↾ 𝐴 ) ) = [ 𝐵 ] ( ◡ E ↾ 𝐴 ) |
3 | eccnvepres2 | ⊢ ( 𝐵 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝐵 ] ( ◡ E ↾ dom ( ◡ E ↾ 𝐴 ) ) = 𝐵 ) | |
4 | 2 3 | eqtr3id | ⊢ ( 𝐵 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝐵 ] ( ◡ E ↾ 𝐴 ) = 𝐵 ) |