Metamath Proof Explorer


Theorem eccnvepres3

Description: Condition for a restricted converse epsilon coset of a set to be the set itself. (Contributed by Peter Mazsa, 11-May-2021)

Ref Expression
Assertion eccnvepres3 ( 𝐵 ∈ dom ( E ↾ 𝐴 ) → [ 𝐵 ] ( E ↾ 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 resdmres ( E ↾ dom ( E ↾ 𝐴 ) ) = ( E ↾ 𝐴 )
2 1 eceq2i [ 𝐵 ] ( E ↾ dom ( E ↾ 𝐴 ) ) = [ 𝐵 ] ( E ↾ 𝐴 )
3 eccnvepres2 ( 𝐵 ∈ dom ( E ↾ 𝐴 ) → [ 𝐵 ] ( E ↾ dom ( E ↾ 𝐴 ) ) = 𝐵 )
4 2 3 eqtr3id ( 𝐵 ∈ dom ( E ↾ 𝐴 ) → [ 𝐵 ] ( E ↾ 𝐴 ) = 𝐵 )