Metamath Proof Explorer


Theorem eldmqsres

Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020)

Ref Expression
Assertion eldmqsres ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ( 𝑅𝐴 ) / ( 𝑅𝐴 ) ) ↔ ∃ 𝑢𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑢 ] 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 elqsg ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ( 𝑅𝐴 ) / ( 𝑅𝐴 ) ) ↔ ∃ 𝑢 ∈ dom ( 𝑅𝐴 ) 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) )
2 eldmres2 ( 𝑢 ∈ V → ( 𝑢 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝑢𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) )
3 2 elv ( 𝑢 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝑢𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) )
4 3 anbi1i ( ( 𝑢 ∈ dom ( 𝑅𝐴 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ↔ ( ( 𝑢𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) )
5 ecres2 ( 𝑢𝐴 → [ 𝑢 ] ( 𝑅𝐴 ) = [ 𝑢 ] 𝑅 )
6 5 eqeq2d ( 𝑢𝐴 → ( 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ↔ 𝐵 = [ 𝑢 ] 𝑅 ) )
7 6 pm5.32i ( ( 𝑢𝐴𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ↔ ( 𝑢𝐴𝐵 = [ 𝑢 ] 𝑅 ) )
8 7 anbi2i ( ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢𝐴𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢𝐴𝐵 = [ 𝑢 ] 𝑅 ) ) )
9 an21 ( ( ( 𝑢𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢𝐴𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ) )
10 an12 ( ( 𝑢𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑢 ] 𝑅 ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢𝐴𝐵 = [ 𝑢 ] 𝑅 ) ) )
11 8 9 10 3bitr4i ( ( ( 𝑢𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ↔ ( 𝑢𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑢 ] 𝑅 ) ) )
12 4 11 bitri ( ( 𝑢 ∈ dom ( 𝑅𝐴 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ) ↔ ( 𝑢𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑢 ] 𝑅 ) ) )
13 12 rexbii2 ( ∃ 𝑢 ∈ dom ( 𝑅𝐴 ) 𝐵 = [ 𝑢 ] ( 𝑅𝐴 ) ↔ ∃ 𝑢𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑢 ] 𝑅 ) )
14 1 13 bitrdi ( 𝐵𝑉 → ( 𝐵 ∈ ( dom ( 𝑅𝐴 ) / ( 𝑅𝐴 ) ) ↔ ∃ 𝑢𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅𝐵 = [ 𝑢 ] 𝑅 ) ) )