Step |
Hyp |
Ref |
Expression |
1 |
|
elqsg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) |
2 |
|
eldmres2 |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) ) |
3 |
2
|
elv |
⊢ ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) |
5 |
|
ecres2 |
⊢ ( 𝑢 ∈ 𝐴 → [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) = [ 𝑢 ] 𝑅 ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑢 ∈ 𝐴 → ( 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ↔ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
7 |
6
|
pm5.32i |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
8 |
7
|
anbi2i |
⊢ ( ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
9 |
|
an21 |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) ) |
10 |
|
an12 |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
12 |
4 11
|
bitri |
⊢ ( ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
13 |
12
|
rexbii2 |
⊢ ( ∃ 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
14 |
1 13
|
bitrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |