Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopqsi.1 | |- R e. _V |
|
| ecopqsi.2 | |- S = ( ( A X. A ) /. R ) |
||
| Assertion | ecopqsi | |- ( ( B e. A /\ C e. A ) -> [ <. B , C >. ] R e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopqsi.1 | |- R e. _V |
|
| 2 | ecopqsi.2 | |- S = ( ( A X. A ) /. R ) |
|
| 3 | opelxpi | |- ( ( B e. A /\ C e. A ) -> <. B , C >. e. ( A X. A ) ) |
|
| 4 | 1 | ecelqsi | |- ( <. B , C >. e. ( A X. A ) -> [ <. B , C >. ] R e. ( ( A X. A ) /. R ) ) |
| 5 | 4 2 | eleqtrrdi | |- ( <. B , C >. e. ( A X. A ) -> [ <. B , C >. ] R e. S ) |
| 6 | 3 5 | syl | |- ( ( B e. A /\ C e. A ) -> [ <. B , C >. ] R e. S ) |