Metamath Proof Explorer


Theorem ecopqsi

Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)

Ref Expression
Hypotheses ecopqsi.1
|- R e. _V
ecopqsi.2
|- S = ( ( A X. A ) /. R )
Assertion ecopqsi
|- ( ( B e. A /\ C e. A ) -> [ <. B , C >. ] R e. S )

Proof

Step Hyp Ref Expression
1 ecopqsi.1
 |-  R e. _V
2 ecopqsi.2
 |-  S = ( ( A X. A ) /. R )
3 opelxpi
 |-  ( ( B e. A /\ C e. A ) -> <. B , C >. e. ( A X. A ) )
4 1 ecelqsi
 |-  ( <. B , C >. e. ( A X. A ) -> [ <. B , C >. ] R e. ( ( A X. A ) /. R ) )
5 4 2 eleqtrrdi
 |-  ( <. B , C >. e. ( A X. A ) -> [ <. B , C >. ] R e. S )
6 3 5 syl
 |-  ( ( B e. A /\ C e. A ) -> [ <. B , C >. ] R e. S )