Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecopqsi.1 | |- R e. _V |
|
ecopqsi.2 | |- S = ( ( A X. A ) /. R ) |
||
Assertion | ecopqsi | |- ( ( B e. A /\ C e. A ) -> [ <. B , C >. ] R e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopqsi.1 | |- R e. _V |
|
2 | ecopqsi.2 | |- S = ( ( A X. A ) /. R ) |
|
3 | opelxpi | |- ( ( B e. A /\ C e. A ) -> <. B , C >. e. ( A X. A ) ) |
|
4 | 1 | ecelqsi | |- ( <. B , C >. e. ( A X. A ) -> [ <. B , C >. ] R e. ( ( A X. A ) /. R ) ) |
5 | 4 2 | eleqtrrdi | |- ( <. B , C >. e. ( A X. A ) -> [ <. B , C >. ] R e. S ) |
6 | 3 5 | syl | |- ( ( B e. A /\ C e. A ) -> [ <. B , C >. ] R e. S ) |