Description: Restricted coset of B . (Contributed by Peter Mazsa, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecres | |- [ B ] ( R |` A ) = { x | ( B e. A /\ B R x ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elecres | |- ( x e. _V -> ( x e. [ B ] ( R |` A ) <-> ( B e. A /\ B R x ) ) ) | |
| 2 | 1 | elv | |- ( x e. [ B ] ( R |` A ) <-> ( B e. A /\ B R x ) ) | 
| 3 | 2 | eqabi |  |-  [ B ] ( R |` A ) = { x | ( B e. A /\ B R x ) } |