Description: Elementhood in the restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elecres | |- ( C e. V -> ( C e. [ B ] ( R |` A ) <-> ( B e. A /\ B R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( R |` A ) |
|
| 2 | relelec | |- ( Rel ( R |` A ) -> ( C e. [ B ] ( R |` A ) <-> B ( R |` A ) C ) ) |
|
| 3 | 1 2 | ax-mp | |- ( C e. [ B ] ( R |` A ) <-> B ( R |` A ) C ) |
| 4 | brres | |- ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |
|
| 5 | 3 4 | bitrid | |- ( C e. V -> ( C e. [ B ] ( R |` A ) <-> ( B e. A /\ B R C ) ) ) |