Metamath Proof Explorer


Theorem elecres

Description: Elementhood in the restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)

Ref Expression
Assertion elecres
|- ( C e. V -> ( C e. [ B ] ( R |` A ) <-> ( B e. A /\ B R C ) ) )

Proof

Step Hyp Ref Expression
1 relres
 |-  Rel ( R |` A )
2 relelec
 |-  ( Rel ( R |` A ) -> ( C e. [ B ] ( R |` A ) <-> B ( R |` A ) C ) )
3 1 2 ax-mp
 |-  ( C e. [ B ] ( R |` A ) <-> B ( R |` A ) C )
4 brres
 |-  ( C e. V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) )
5 3 4 syl5bb
 |-  ( C e. V -> ( C e. [ B ] ( R |` A ) <-> ( B e. A /\ B R C ) ) )