Metamath Proof Explorer


Theorem elecres

Description: Elementhood in the restricted coset of B . (Contributed by Peter Mazsa, 21-Sep-2018)

Ref Expression
Assertion elecres ( 𝐶𝑉 → ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 relres Rel ( 𝑅𝐴 )
2 relelec ( Rel ( 𝑅𝐴 ) → ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ 𝐵 ( 𝑅𝐴 ) 𝐶 ) )
3 1 2 ax-mp ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ 𝐵 ( 𝑅𝐴 ) 𝐶 )
4 brres ( 𝐶𝑉 → ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )
5 3 4 syl5bb ( 𝐶𝑉 → ( 𝐶 ∈ [ 𝐵 ] ( 𝑅𝐴 ) ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )