Metamath Proof Explorer


Theorem ee102

Description: e102 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee102.1
|- ( ph -> ps )
ee102.2
|- ch
ee102.3
|- ( ph -> ( th -> ta ) )
ee102.4
|- ( ps -> ( ch -> ( ta -> et ) ) )
Assertion ee102
|- ( ph -> ( th -> et ) )

Proof

Step Hyp Ref Expression
1 ee102.1
 |-  ( ph -> ps )
2 ee102.2
 |-  ch
3 ee102.3
 |-  ( ph -> ( th -> ta ) )
4 ee102.4
 |-  ( ps -> ( ch -> ( ta -> et ) ) )
5 1 a1d
 |-  ( ph -> ( th -> ps ) )
6 2 a1i
 |-  ( th -> ch )
7 6 a1i
 |-  ( ph -> ( th -> ch ) )
8 5 7 3 4 ee222
 |-  ( ph -> ( th -> et ) )