Metamath Proof Explorer


Theorem ee120

Description: Virtual deduction rule e120 without virtual deduction symbols. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee120.1
|- ( ph -> ps )
ee120.2
|- ( ph -> ( ch -> th ) )
ee120.3
|- ta
ee120.4
|- ( ps -> ( th -> ( ta -> et ) ) )
Assertion ee120
|- ( ph -> ( ch -> et ) )

Proof

Step Hyp Ref Expression
1 ee120.1
 |-  ( ph -> ps )
2 ee120.2
 |-  ( ph -> ( ch -> th ) )
3 ee120.3
 |-  ta
4 ee120.4
 |-  ( ps -> ( th -> ( ta -> et ) ) )
5 1 a1d
 |-  ( ph -> ( ch -> ps ) )
6 3 a1i
 |-  ( ch -> ta )
7 6 a1i
 |-  ( ph -> ( ch -> ta ) )
8 5 2 7 4 ee222
 |-  ( ph -> ( ch -> et ) )