Metamath Proof Explorer


Theorem ee201

Description: e201 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee201.1
|- ( ph -> ( ps -> ch ) )
ee201.2
|- th
ee201.3
|- ( ph -> ta )
ee201.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee201
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee201.1
 |-  ( ph -> ( ps -> ch ) )
2 ee201.2
 |-  th
3 ee201.3
 |-  ( ph -> ta )
4 ee201.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 a1i
 |-  ( ps -> th )
6 5 a1i
 |-  ( ph -> ( ps -> th ) )
7 3 a1d
 |-  ( ph -> ( ps -> ta ) )
8 1 6 7 4 ee222
 |-  ( ph -> ( ps -> et ) )