Metamath Proof Explorer


Theorem ee202

Description: e202 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee202.1
|- ( ph -> ( ps -> ch ) )
ee202.2
|- th
ee202.3
|- ( ph -> ( ps -> ta ) )
ee202.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee202
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee202.1
 |-  ( ph -> ( ps -> ch ) )
2 ee202.2
 |-  th
3 ee202.3
 |-  ( ph -> ( ps -> ta ) )
4 ee202.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 a1i
 |-  ( ps -> th )
6 5 a1i
 |-  ( ph -> ( ps -> th ) )
7 1 6 3 4 ee222
 |-  ( ph -> ( ps -> et ) )