Metamath Proof Explorer


Theorem ee220

Description: e220 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee220.1
|- ( ph -> ( ps -> ch ) )
ee220.2
|- ( ph -> ( ps -> th ) )
ee220.3
|- ta
ee220.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee220
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee220.1
 |-  ( ph -> ( ps -> ch ) )
2 ee220.2
 |-  ( ph -> ( ps -> th ) )
3 ee220.3
 |-  ta
4 ee220.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 3 2a1i
 |-  ( ph -> ( ps -> ta ) )
6 1 2 5 4 ee222
 |-  ( ph -> ( ps -> et ) )