Metamath Proof Explorer


Theorem ee220

Description: e220 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee220.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee220.2 ( 𝜑 → ( 𝜓𝜃 ) )
ee220.3 𝜏
ee220.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee220 ( 𝜑 → ( 𝜓𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee220.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee220.2 ( 𝜑 → ( 𝜓𝜃 ) )
3 ee220.3 𝜏
4 ee220.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 3 2a1i ( 𝜑 → ( 𝜓𝜏 ) )
6 1 2 5 4 ee222 ( 𝜑 → ( 𝜓𝜂 ) )