Metamath Proof Explorer


Theorem efmndhash

Description: The monoid of endofunctions on n objects has cardinality n ^ n . (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndbas.g
|- G = ( EndoFMnd ` A )
efmndbas.b
|- B = ( Base ` G )
Assertion efmndhash
|- ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) )

Proof

Step Hyp Ref Expression
1 efmndbas.g
 |-  G = ( EndoFMnd ` A )
2 efmndbas.b
 |-  B = ( Base ` G )
3 1 2 efmndbas
 |-  B = ( A ^m A )
4 3 a1i
 |-  ( A e. Fin -> B = ( A ^m A ) )
5 4 fveq2d
 |-  ( A e. Fin -> ( # ` B ) = ( # ` ( A ^m A ) ) )
6 hashmap
 |-  ( ( A e. Fin /\ A e. Fin ) -> ( # ` ( A ^m A ) ) = ( ( # ` A ) ^ ( # ` A ) ) )
7 6 anidms
 |-  ( A e. Fin -> ( # ` ( A ^m A ) ) = ( ( # ` A ) ^ ( # ` A ) ) )
8 5 7 eqtrd
 |-  ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) )