Description: The monoid of endofunctions on n objects has cardinality n ^ n . (Contributed by AV, 27-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
efmndbas.b | |- B = ( Base ` G ) |
||
Assertion | efmndhash | |- ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndbas.g | |- G = ( EndoFMnd ` A ) |
|
2 | efmndbas.b | |- B = ( Base ` G ) |
|
3 | 1 2 | efmndbas | |- B = ( A ^m A ) |
4 | 3 | a1i | |- ( A e. Fin -> B = ( A ^m A ) ) |
5 | 4 | fveq2d | |- ( A e. Fin -> ( # ` B ) = ( # ` ( A ^m A ) ) ) |
6 | hashmap | |- ( ( A e. Fin /\ A e. Fin ) -> ( # ` ( A ^m A ) ) = ( ( # ` A ) ^ ( # ` A ) ) ) |
|
7 | 6 | anidms | |- ( A e. Fin -> ( # ` ( A ^m A ) ) = ( ( # ` A ) ^ ( # ` A ) ) ) |
8 | 5 7 | eqtrd | |- ( A e. Fin -> ( # ` B ) = ( ( # ` A ) ^ ( # ` A ) ) ) |