| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efmndmgm.g |  |-  G = ( EndoFMnd ` A ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 4 | 1 2 3 | efmndcl |  |-  ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) ) -> ( f ( +g ` G ) g ) e. ( Base ` G ) ) | 
						
							| 5 | 4 | rgen2 |  |-  A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) | 
						
							| 6 | 1 | fvexi |  |-  G e. _V | 
						
							| 7 | 2 3 | ismgm |  |-  ( G e. _V -> ( G e. Mgm <-> A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( G e. Mgm <-> A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) ) | 
						
							| 9 | 5 8 | mpbir |  |-  G e. Mgm |