| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 2 | 1 | mulridd |  |-  ( N e. ZZ -> ( N x. 1 ) = N ) | 
						
							| 3 | 2 | fveq2d |  |-  ( N e. ZZ -> ( exp ` ( N x. 1 ) ) = ( exp ` N ) ) | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 |  | efexp |  |-  ( ( 1 e. CC /\ N e. ZZ ) -> ( exp ` ( N x. 1 ) ) = ( ( exp ` 1 ) ^ N ) ) | 
						
							| 6 | 4 5 | mpan |  |-  ( N e. ZZ -> ( exp ` ( N x. 1 ) ) = ( ( exp ` 1 ) ^ N ) ) | 
						
							| 7 | 3 6 | eqtr3d |  |-  ( N e. ZZ -> ( exp ` N ) = ( ( exp ` 1 ) ^ N ) ) | 
						
							| 8 |  | df-e |  |-  _e = ( exp ` 1 ) | 
						
							| 9 | 8 | oveq1i |  |-  ( _e ^ N ) = ( ( exp ` 1 ) ^ N ) | 
						
							| 10 | 7 9 | eqtr4di |  |-  ( N e. ZZ -> ( exp ` N ) = ( _e ^ N ) ) |