| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 2 |
|
mulcom |
|- ( ( A e. CC /\ N e. CC ) -> ( A x. N ) = ( N x. A ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ N e. ZZ ) -> ( A x. N ) = ( N x. A ) ) |
| 4 |
3
|
fveq2d |
|- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( exp ` ( N x. A ) ) ) |
| 5 |
|
oveq2 |
|- ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) |
| 6 |
5
|
fveq2d |
|- ( j = 0 -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. 0 ) ) ) |
| 7 |
|
oveq2 |
|- ( j = 0 -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ 0 ) ) |
| 8 |
6 7
|
eqeq12d |
|- ( j = 0 -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) ) |
| 9 |
|
oveq2 |
|- ( j = k -> ( A x. j ) = ( A x. k ) ) |
| 10 |
9
|
fveq2d |
|- ( j = k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. k ) ) ) |
| 11 |
|
oveq2 |
|- ( j = k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ k ) ) |
| 12 |
10 11
|
eqeq12d |
|- ( j = k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) ) |
| 13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) |
| 14 |
13
|
fveq2d |
|- ( j = ( k + 1 ) -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. ( k + 1 ) ) ) ) |
| 15 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) |
| 17 |
|
oveq2 |
|- ( j = -u k -> ( A x. j ) = ( A x. -u k ) ) |
| 18 |
17
|
fveq2d |
|- ( j = -u k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. -u k ) ) ) |
| 19 |
|
oveq2 |
|- ( j = -u k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ -u k ) ) |
| 20 |
18 19
|
eqeq12d |
|- ( j = -u k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) |
| 21 |
|
oveq2 |
|- ( j = N -> ( A x. j ) = ( A x. N ) ) |
| 22 |
21
|
fveq2d |
|- ( j = N -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. N ) ) ) |
| 23 |
|
oveq2 |
|- ( j = N -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ N ) ) |
| 24 |
22 23
|
eqeq12d |
|- ( j = N -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) |
| 25 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 26 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
| 27 |
26
|
fveq2d |
|- ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( exp ` 0 ) ) |
| 28 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
| 29 |
28
|
exp0d |
|- ( A e. CC -> ( ( exp ` A ) ^ 0 ) = 1 ) |
| 30 |
25 27 29
|
3eqtr4a |
|- ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) |
| 31 |
|
oveq1 |
|- ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 32 |
31
|
adantl |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 33 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 34 |
|
ax-1cn |
|- 1 e. CC |
| 35 |
|
adddi |
|- ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
| 36 |
34 35
|
mp3an3 |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
| 37 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
| 38 |
37
|
adantr |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) |
| 39 |
38
|
oveq2d |
|- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) |
| 40 |
36 39
|
eqtrd |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
| 41 |
33 40
|
sylan2 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
| 42 |
41
|
fveq2d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( exp ` ( ( A x. k ) + A ) ) ) |
| 43 |
|
mulcl |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) |
| 44 |
33 43
|
sylan2 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A x. k ) e. CC ) |
| 45 |
|
simpl |
|- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
| 46 |
|
efadd |
|- ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 47 |
44 45 46
|
syl2anc |
|- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 48 |
42 47
|
eqtrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 49 |
48
|
adantr |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 50 |
|
expp1 |
|- ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 51 |
28 50
|
sylan |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 52 |
51
|
adantr |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 53 |
32 49 52
|
3eqtr4d |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) |
| 54 |
53
|
exp31 |
|- ( A e. CC -> ( k e. NN0 -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) ) |
| 55 |
|
oveq2 |
|- ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
| 56 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 57 |
|
mulneg2 |
|- ( ( A e. CC /\ k e. CC ) -> ( A x. -u k ) = -u ( A x. k ) ) |
| 58 |
56 57
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( A x. -u k ) = -u ( A x. k ) ) |
| 59 |
58
|
fveq2d |
|- ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( exp ` -u ( A x. k ) ) ) |
| 60 |
56 43
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( A x. k ) e. CC ) |
| 61 |
|
efneg |
|- ( ( A x. k ) e. CC -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
| 62 |
60 61
|
syl |
|- ( ( A e. CC /\ k e. NN ) -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
| 63 |
59 62
|
eqtrd |
|- ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
| 64 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 65 |
|
expneg |
|- ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
| 66 |
28 64 65
|
syl2an |
|- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
| 67 |
63 66
|
eqeq12d |
|- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) <-> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) ) |
| 68 |
55 67
|
imbitrrid |
|- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) |
| 69 |
68
|
ex |
|- ( A e. CC -> ( k e. NN -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) ) |
| 70 |
8 12 16 20 24 30 54 69
|
zindd |
|- ( A e. CC -> ( N e. ZZ -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) |
| 71 |
70
|
imp |
|- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) |
| 72 |
4 71
|
eqtr3d |
|- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. A ) ) = ( ( exp ` A ) ^ N ) ) |