| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 2 |  | mulcom |  |-  ( ( A e. CC /\ N e. CC ) -> ( A x. N ) = ( N x. A ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( A x. N ) = ( N x. A ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( exp ` ( N x. A ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( j = 0 -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. 0 ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( j = 0 -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ 0 ) ) | 
						
							| 8 | 6 7 | eqeq12d |  |-  ( j = 0 -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( j = k -> ( A x. j ) = ( A x. k ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( j = k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. k ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( j = k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ k ) ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( j = k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( j = ( k + 1 ) -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. ( k + 1 ) ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( j = ( k + 1 ) -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) | 
						
							| 16 | 14 15 | eqeq12d |  |-  ( j = ( k + 1 ) -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( j = -u k -> ( A x. j ) = ( A x. -u k ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( j = -u k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. -u k ) ) ) | 
						
							| 19 |  | oveq2 |  |-  ( j = -u k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ -u k ) ) | 
						
							| 20 | 18 19 | eqeq12d |  |-  ( j = -u k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( j = N -> ( A x. j ) = ( A x. N ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( j = N -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. N ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( j = N -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ N ) ) | 
						
							| 24 | 22 23 | eqeq12d |  |-  ( j = N -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) | 
						
							| 25 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 26 |  | mul01 |  |-  ( A e. CC -> ( A x. 0 ) = 0 ) | 
						
							| 27 | 26 | fveq2d |  |-  ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( exp ` 0 ) ) | 
						
							| 28 |  | efcl |  |-  ( A e. CC -> ( exp ` A ) e. CC ) | 
						
							| 29 | 28 | exp0d |  |-  ( A e. CC -> ( ( exp ` A ) ^ 0 ) = 1 ) | 
						
							| 30 | 25 27 29 | 3eqtr4a |  |-  ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) | 
						
							| 31 |  | oveq1 |  |-  ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) | 
						
							| 33 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 34 |  | ax-1cn |  |-  1 e. CC | 
						
							| 35 |  | adddi |  |-  ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) | 
						
							| 36 | 34 35 | mp3an3 |  |-  ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) | 
						
							| 37 |  | mulrid |  |-  ( A e. CC -> ( A x. 1 ) = A ) | 
						
							| 38 | 37 | adantr |  |-  ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) | 
						
							| 40 | 36 39 | eqtrd |  |-  ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) | 
						
							| 41 | 33 40 | sylan2 |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( exp ` ( ( A x. k ) + A ) ) ) | 
						
							| 43 |  | mulcl |  |-  ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) | 
						
							| 44 | 33 43 | sylan2 |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A x. k ) e. CC ) | 
						
							| 45 |  | simpl |  |-  ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) | 
						
							| 46 |  | efadd |  |-  ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) | 
						
							| 47 | 44 45 46 | syl2anc |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) | 
						
							| 48 | 42 47 | eqtrd |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) | 
						
							| 50 |  | expp1 |  |-  ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) | 
						
							| 51 | 28 50 | sylan |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) | 
						
							| 53 | 32 49 52 | 3eqtr4d |  |-  ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) | 
						
							| 54 | 53 | exp31 |  |-  ( A e. CC -> ( k e. NN0 -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) ) | 
						
							| 55 |  | oveq2 |  |-  ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) | 
						
							| 56 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 57 |  | mulneg2 |  |-  ( ( A e. CC /\ k e. CC ) -> ( A x. -u k ) = -u ( A x. k ) ) | 
						
							| 58 | 56 57 | sylan2 |  |-  ( ( A e. CC /\ k e. NN ) -> ( A x. -u k ) = -u ( A x. k ) ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( exp ` -u ( A x. k ) ) ) | 
						
							| 60 | 56 43 | sylan2 |  |-  ( ( A e. CC /\ k e. NN ) -> ( A x. k ) e. CC ) | 
						
							| 61 |  | efneg |  |-  ( ( A x. k ) e. CC -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( A e. CC /\ k e. NN ) -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) | 
						
							| 63 | 59 62 | eqtrd |  |-  ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) | 
						
							| 64 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 65 |  | expneg |  |-  ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) | 
						
							| 66 | 28 64 65 | syl2an |  |-  ( ( A e. CC /\ k e. NN ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) | 
						
							| 67 | 63 66 | eqeq12d |  |-  ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) <-> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) ) | 
						
							| 68 | 55 67 | imbitrrid |  |-  ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) | 
						
							| 69 | 68 | ex |  |-  ( A e. CC -> ( k e. NN -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) ) | 
						
							| 70 | 8 12 16 20 24 30 54 69 | zindd |  |-  ( A e. CC -> ( N e. ZZ -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) | 
						
							| 71 | 70 | imp |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) | 
						
							| 72 | 4 71 | eqtr3d |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. A ) ) = ( ( exp ` A ) ^ N ) ) |