Metamath Proof Explorer


Theorem efexp

Description: The exponential of an integer power. Corollary 15-4.4 of Gleason p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion efexp ANeNA=eAN

Proof

Step Hyp Ref Expression
1 zcn NN
2 mulcom ANA N=NA
3 1 2 sylan2 ANA N=NA
4 3 fveq2d ANeA N=eNA
5 oveq2 j=0Aj=A0
6 5 fveq2d j=0eAj=eA0
7 oveq2 j=0eAj=eA0
8 6 7 eqeq12d j=0eAj=eAjeA0=eA0
9 oveq2 j=kAj=Ak
10 9 fveq2d j=keAj=eAk
11 oveq2 j=keAj=eAk
12 10 11 eqeq12d j=keAj=eAjeAk=eAk
13 oveq2 j=k+1Aj=Ak+1
14 13 fveq2d j=k+1eAj=eAk+1
15 oveq2 j=k+1eAj=eAk+1
16 14 15 eqeq12d j=k+1eAj=eAjeAk+1=eAk+1
17 oveq2 j=kAj=Ak
18 17 fveq2d j=keAj=eAk
19 oveq2 j=keAj=eAk
20 18 19 eqeq12d j=keAj=eAjeAk=eAk
21 oveq2 j=NAj=A N
22 21 fveq2d j=NeAj=eA N
23 oveq2 j=NeAj=eAN
24 22 23 eqeq12d j=NeAj=eAjeA N=eAN
25 ef0 e0=1
26 mul01 AA0=0
27 26 fveq2d AeA0=e0
28 efcl AeA
29 28 exp0d AeA0=1
30 25 27 29 3eqtr4a AeA0=eA0
31 oveq1 eAk=eAkeAkeA=eAkeA
32 31 adantl Ak0eAk=eAkeAkeA=eAkeA
33 nn0cn k0k
34 ax-1cn 1
35 adddi Ak1Ak+1=Ak+A1
36 34 35 mp3an3 AkAk+1=Ak+A1
37 mulrid AA1=A
38 37 adantr AkA1=A
39 38 oveq2d AkAk+A1=Ak+A
40 36 39 eqtrd AkAk+1=Ak+A
41 33 40 sylan2 Ak0Ak+1=Ak+A
42 41 fveq2d Ak0eAk+1=eAk+A
43 mulcl AkAk
44 33 43 sylan2 Ak0Ak
45 simpl Ak0A
46 efadd AkAeAk+A=eAkeA
47 44 45 46 syl2anc Ak0eAk+A=eAkeA
48 42 47 eqtrd Ak0eAk+1=eAkeA
49 48 adantr Ak0eAk=eAkeAk+1=eAkeA
50 expp1 eAk0eAk+1=eAkeA
51 28 50 sylan Ak0eAk+1=eAkeA
52 51 adantr Ak0eAk=eAkeAk+1=eAkeA
53 32 49 52 3eqtr4d Ak0eAk=eAkeAk+1=eAk+1
54 53 exp31 Ak0eAk=eAkeAk+1=eAk+1
55 oveq2 eAk=eAk1eAk=1eAk
56 nncn kk
57 mulneg2 AkAk=Ak
58 56 57 sylan2 AkAk=Ak
59 58 fveq2d AkeAk=eAk
60 56 43 sylan2 AkAk
61 efneg AkeAk=1eAk
62 60 61 syl AkeAk=1eAk
63 59 62 eqtrd AkeAk=1eAk
64 nnnn0 kk0
65 expneg eAk0eAk=1eAk
66 28 64 65 syl2an AkeAk=1eAk
67 63 66 eqeq12d AkeAk=eAk1eAk=1eAk
68 55 67 imbitrrid AkeAk=eAkeAk=eAk
69 68 ex AkeAk=eAkeAk=eAk
70 8 12 16 20 24 30 54 69 zindd ANeA N=eAN
71 70 imp ANeA N=eAN
72 4 71 eqtr3d ANeNA=eAN