Description: The exponential of an integer power. Corollary 15-4.4 of Gleason p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 5-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | efexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |
|
2 | mulcom | |
|
3 | 1 2 | sylan2 | |
4 | 3 | fveq2d | |
5 | oveq2 | |
|
6 | 5 | fveq2d | |
7 | oveq2 | |
|
8 | 6 7 | eqeq12d | |
9 | oveq2 | |
|
10 | 9 | fveq2d | |
11 | oveq2 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq2 | |
|
14 | 13 | fveq2d | |
15 | oveq2 | |
|
16 | 14 15 | eqeq12d | |
17 | oveq2 | |
|
18 | 17 | fveq2d | |
19 | oveq2 | |
|
20 | 18 19 | eqeq12d | |
21 | oveq2 | |
|
22 | 21 | fveq2d | |
23 | oveq2 | |
|
24 | 22 23 | eqeq12d | |
25 | ef0 | |
|
26 | mul01 | |
|
27 | 26 | fveq2d | |
28 | efcl | |
|
29 | 28 | exp0d | |
30 | 25 27 29 | 3eqtr4a | |
31 | oveq1 | |
|
32 | 31 | adantl | |
33 | nn0cn | |
|
34 | ax-1cn | |
|
35 | adddi | |
|
36 | 34 35 | mp3an3 | |
37 | mulrid | |
|
38 | 37 | adantr | |
39 | 38 | oveq2d | |
40 | 36 39 | eqtrd | |
41 | 33 40 | sylan2 | |
42 | 41 | fveq2d | |
43 | mulcl | |
|
44 | 33 43 | sylan2 | |
45 | simpl | |
|
46 | efadd | |
|
47 | 44 45 46 | syl2anc | |
48 | 42 47 | eqtrd | |
49 | 48 | adantr | |
50 | expp1 | |
|
51 | 28 50 | sylan | |
52 | 51 | adantr | |
53 | 32 49 52 | 3eqtr4d | |
54 | 53 | exp31 | |
55 | oveq2 | |
|
56 | nncn | |
|
57 | mulneg2 | |
|
58 | 56 57 | sylan2 | |
59 | 58 | fveq2d | |
60 | 56 43 | sylan2 | |
61 | efneg | |
|
62 | 60 61 | syl | |
63 | 59 62 | eqtrd | |
64 | nnnn0 | |
|
65 | expneg | |
|
66 | 28 64 65 | syl2an | |
67 | 63 66 | eqeq12d | |
68 | 55 67 | imbitrrid | |
69 | 68 | ex | |
70 | 8 12 16 20 24 30 54 69 | zindd | |
71 | 70 | imp | |
72 | 4 71 | eqtr3d | |