Description: New way ( elv , and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | el3v23.1 | |- ( ( ph /\ y e. _V /\ z e. _V ) -> th ) |
|
Assertion | el3v23 | |- ( ph -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el3v23.1 | |- ( ( ph /\ y e. _V /\ z e. _V ) -> th ) |
|
2 | 1 | el3v3 | |- ( ( ph /\ y e. _V ) -> th ) |
3 | 2 | elvd | |- ( ph -> th ) |