Description: New way ( elv , and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | el3v23.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → 𝜃 ) | |
| Assertion | el3v23 | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el3v23.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) → 𝜃 ) | |
| 2 | 1 | el3v3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ V ) → 𝜃 ) |
| 3 | 2 | elvd | ⊢ ( 𝜑 → 𝜃 ) |