Metamath Proof Explorer


Theorem an2anr

Description: Double commutation in conjunction. (Contributed by Peter Mazsa, 27-Jun-2019)

Ref Expression
Assertion an2anr ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜓𝜑 ) ∧ ( 𝜃𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
2 ancom ( ( 𝜒𝜃 ) ↔ ( 𝜃𝜒 ) )
3 1 2 anbi12i ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ↔ ( ( 𝜓𝜑 ) ∧ ( 𝜃𝜒 ) ) )