Step |
Hyp |
Ref |
Expression |
1 |
|
elbigo |
|- ( F e. ( _O ` G ) <-> ( F e. ( RR ^pm RR ) /\ G e. ( RR ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ ( m x. ( G ` y ) ) ) ) |
2 |
|
reex |
|- RR e. _V |
3 |
2 2
|
elpm2 |
|- ( F e. ( RR ^pm RR ) <-> ( F : dom F --> RR /\ dom F C_ RR ) ) |
4 |
3
|
simprbi |
|- ( F e. ( RR ^pm RR ) -> dom F C_ RR ) |
5 |
4
|
3ad2ant1 |
|- ( ( F e. ( RR ^pm RR ) /\ G e. ( RR ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ ( m x. ( G ` y ) ) ) -> dom F C_ RR ) |
6 |
1 5
|
sylbi |
|- ( F e. ( _O ` G ) -> dom F C_ RR ) |