Description: The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbigodm | ⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → dom 𝐹 ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbigo | ⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 2 | reex | ⊢ ℝ ∈ V | |
| 3 | 2 2 | elpm2 | ⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) → dom 𝐹 ⊆ ℝ ) |
| 6 | 1 5 | sylbi | ⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → dom 𝐹 ⊆ ℝ ) |