| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bigoval | ⊢ ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  →  ( Ο ‘ 𝐺 )  =  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) } ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) } ) ) | 
						
							| 3 |  | dmeq | ⊢ ( 𝑓  =  𝐹  →  dom  𝑓  =  dom  𝐹 ) | 
						
							| 4 | 3 | ineq1d | ⊢ ( 𝑓  =  𝐹  →  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) )  =  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ) | 
						
							| 5 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 7 | 4 6 | raleqbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 8 | 7 | 2rexbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 9 | 8 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) }  ↔  ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 10 | 2 9 | bitrdi | ⊢ ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  𝐹  ∈  ( Ο ‘ 𝐺 ) )  ↔  ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 12 |  | elbigofrcl | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  →  𝐺  ∈  ( ℝ  ↑pm  ℝ ) ) | 
						
							| 13 | 12 | pm4.71ri | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  𝐹  ∈  ( Ο ‘ 𝐺 ) ) ) | 
						
							| 14 |  | 3anan12 | ⊢ ( ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) )  ↔  ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 15 | 11 13 14 | 3bitr4i | ⊢ ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ( 𝐹  ∈  ( ℝ  ↑pm  ℝ )  ∧  𝐺  ∈  ( ℝ  ↑pm  ℝ )  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) |