Step |
Hyp |
Ref |
Expression |
1 |
|
bigoval |
⊢ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) → ( Ο ‘ 𝐺 ) = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) } ) ) |
3 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
4 |
3
|
ineq1d |
⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) = ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ) |
5 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
6 |
5
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
7 |
4 6
|
raleqbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
8 |
7
|
2rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
9 |
8
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
10 |
2 9
|
bitrdi |
⊢ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
11 |
10
|
pm5.32i |
⊢ ( ( 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐹 ∈ ( Ο ‘ 𝐺 ) ) ↔ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
12 |
|
elbigofrcl |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) → 𝐺 ∈ ( ℝ ↑pm ℝ ) ) |
13 |
12
|
pm4.71ri |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐹 ∈ ( Ο ‘ 𝐺 ) ) ) |
14 |
|
3anan12 |
⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
15 |
11 13 14
|
3bitr4i |
⊢ ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐺 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |