| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) )  =  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 3 | 2 | breq2d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 4 | 3 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 5 | 4 | 2rexbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 6 | 5 | rabbidv | ⊢ ( 𝑔  =  𝐺  →  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) } ) | 
						
							| 7 |  | df-bigo | ⊢ Ο  =  ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 8 |  | ovex | ⊢ ( ℝ  ↑pm  ℝ )  ∈  V | 
						
							| 9 | 8 | rabex | ⊢ { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) }  ∈  V | 
						
							| 10 | 6 7 9 | fvmpt | ⊢ ( 𝐺  ∈  ( ℝ  ↑pm  ℝ )  →  ( Ο ‘ 𝐺 )  =  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) } ) |