Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) = ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) |
3 |
2
|
breq2d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
5 |
4
|
2rexbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
6 |
5
|
rabbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) } = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) } ) |
7 |
|
df-bigo |
⊢ Ο = ( 𝑔 ∈ ( ℝ ↑pm ℝ ) ↦ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) } ) |
8 |
|
ovex |
⊢ ( ℝ ↑pm ℝ ) ∈ V |
9 |
8
|
rabex |
⊢ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) } ∈ V |
10 |
6 7 9
|
fvmpt |
⊢ ( 𝐺 ∈ ( ℝ ↑pm ℝ ) → ( Ο ‘ 𝐺 ) = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) } ) |