Step |
Hyp |
Ref |
Expression |
0 |
|
cbigo |
⊢ Ο |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cr |
⊢ ℝ |
3 |
|
cpm |
⊢ ↑pm |
4 |
2 2 3
|
co |
⊢ ( ℝ ↑pm ℝ ) |
5 |
|
vf |
⊢ 𝑓 |
6 |
|
vx |
⊢ 𝑥 |
7 |
|
vm |
⊢ 𝑚 |
8 |
|
vy |
⊢ 𝑦 |
9 |
5
|
cv |
⊢ 𝑓 |
10 |
9
|
cdm |
⊢ dom 𝑓 |
11 |
6
|
cv |
⊢ 𝑥 |
12 |
|
cico |
⊢ [,) |
13 |
|
cpnf |
⊢ +∞ |
14 |
11 13 12
|
co |
⊢ ( 𝑥 [,) +∞ ) |
15 |
10 14
|
cin |
⊢ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) |
16 |
8
|
cv |
⊢ 𝑦 |
17 |
16 9
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
18 |
|
cle |
⊢ ≤ |
19 |
7
|
cv |
⊢ 𝑚 |
20 |
|
cmul |
⊢ · |
21 |
1
|
cv |
⊢ 𝑔 |
22 |
16 21
|
cfv |
⊢ ( 𝑔 ‘ 𝑦 ) |
23 |
19 22 20
|
co |
⊢ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) |
24 |
17 23 18
|
wbr |
⊢ ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) |
25 |
24 8 15
|
wral |
⊢ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) |
26 |
25 7 2
|
wrex |
⊢ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) |
27 |
26 6 2
|
wrex |
⊢ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) |
28 |
27 5 4
|
crab |
⊢ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) } |
29 |
1 4 28
|
cmpt |
⊢ ( 𝑔 ∈ ( ℝ ↑pm ℝ ) ↦ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) } ) |
30 |
0 29
|
wceq |
⊢ Ο = ( 𝑔 ∈ ( ℝ ↑pm ℝ ) ↦ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝑔 ‘ 𝑦 ) ) } ) |