Metamath Proof Explorer


Definition df-bigo

Description: Define the function "big-O", mapping a real function g to the set of real functions "of order g(x)". Definition in section 1.1 of AhoHopUll p. 2. This is a generalization of "big-O of one", see df-o1 and df-lo1 . As explained in the comment of df-o1 , any big-O can be represented in terms of O(1) and division, see elbigolo1 . (Contributed by AV, 15-May-2020)

Ref Expression
Assertion df-bigo Ο = ( 𝑔 ∈ ( ℝ ↑pm ℝ ) ↦ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbigo Ο
1 vg 𝑔
2 cr
3 cpm pm
4 2 2 3 co ( ℝ ↑pm ℝ )
5 vf 𝑓
6 vx 𝑥
7 vm 𝑚
8 vy 𝑦
9 5 cv 𝑓
10 9 cdm dom 𝑓
11 6 cv 𝑥
12 cico [,)
13 cpnf +∞
14 11 13 12 co ( 𝑥 [,) +∞ )
15 10 14 cin ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) )
16 8 cv 𝑦
17 16 9 cfv ( 𝑓𝑦 )
18 cle
19 7 cv 𝑚
20 cmul ·
21 1 cv 𝑔
22 16 21 cfv ( 𝑔𝑦 )
23 19 22 20 co ( 𝑚 · ( 𝑔𝑦 ) )
24 17 23 18 wbr ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) )
25 24 8 15 wral 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) )
26 25 7 2 wrex 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) )
27 26 6 2 wrex 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) )
28 27 5 4 crab { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) ) }
29 1 4 28 cmpt ( 𝑔 ∈ ( ℝ ↑pm ℝ ) ↦ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) ) } )
30 0 29 wceq Ο = ( 𝑔 ∈ ( ℝ ↑pm ℝ ) ↦ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓𝑦 ) ≤ ( 𝑚 · ( 𝑔𝑦 ) ) } )