| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cbigo | ⊢ Ο | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cr | ⊢ ℝ | 
						
							| 3 |  | cpm | ⊢  ↑pm | 
						
							| 4 | 2 2 3 | co | ⊢ ( ℝ  ↑pm  ℝ ) | 
						
							| 5 |  | vf | ⊢ 𝑓 | 
						
							| 6 |  | vx | ⊢ 𝑥 | 
						
							| 7 |  | vm | ⊢ 𝑚 | 
						
							| 8 |  | vy | ⊢ 𝑦 | 
						
							| 9 | 5 | cv | ⊢ 𝑓 | 
						
							| 10 | 9 | cdm | ⊢ dom  𝑓 | 
						
							| 11 | 6 | cv | ⊢ 𝑥 | 
						
							| 12 |  | cico | ⊢ [,) | 
						
							| 13 |  | cpnf | ⊢ +∞ | 
						
							| 14 | 11 13 12 | co | ⊢ ( 𝑥 [,) +∞ ) | 
						
							| 15 | 10 14 | cin | ⊢ ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) | 
						
							| 16 | 8 | cv | ⊢ 𝑦 | 
						
							| 17 | 16 9 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) | 
						
							| 18 |  | cle | ⊢  ≤ | 
						
							| 19 | 7 | cv | ⊢ 𝑚 | 
						
							| 20 |  | cmul | ⊢  · | 
						
							| 21 | 1 | cv | ⊢ 𝑔 | 
						
							| 22 | 16 21 | cfv | ⊢ ( 𝑔 ‘ 𝑦 ) | 
						
							| 23 | 19 22 20 | co | ⊢ ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 24 | 17 23 18 | wbr | ⊢ ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 25 | 24 8 15 | wral | ⊢ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 26 | 25 7 2 | wrex | ⊢ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 27 | 26 6 2 | wrex | ⊢ ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 28 | 27 5 4 | crab | ⊢ { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 29 | 1 4 28 | cmpt | ⊢ ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 30 | 0 29 | wceq | ⊢ Ο  =  ( 𝑔  ∈  ( ℝ  ↑pm  ℝ )  ↦  { 𝑓  ∈  ( ℝ  ↑pm  ℝ )  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝑓  ∩  ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝑔 ‘ 𝑦 ) ) } ) |