Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ+ → 𝐹 : 𝐴 ⟶ ℝ+ ) |
2 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
3 |
2
|
a1i |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ+ → ℝ+ ⊆ ℝ ) |
4 |
1 3
|
fssd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ+ → 𝐹 : 𝐴 ⟶ ℝ ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
7 |
6
|
ffvelrnda |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
8 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑚 ∈ ℝ ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝐺 : 𝐴 ⟶ ℝ+ ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ+ ) |
11 |
10
|
rpregt0d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( 𝐺 ‘ 𝑦 ) ) ) |
12 |
7 8 11
|
3jca |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( 𝐺 ‘ 𝑦 ) ) ) ) |
13 |
|
ledivmul2 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( 𝐺 ‘ 𝑦 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) / ( 𝐺 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) |
14 |
13
|
bicomd |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑦 ) ∈ ℝ ∧ 0 < ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) / ( 𝐺 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
15 |
12 14
|
syl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) / ( 𝐺 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
16 |
|
id |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → 𝐺 : 𝐴 ⟶ ℝ+ ) |
17 |
2
|
a1i |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → ℝ+ ⊆ ℝ ) |
18 |
16 17
|
fssd |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → 𝐺 : 𝐴 ⟶ ℝ ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → 𝐺 : 𝐴 ⟶ ℝ ) |
20 |
|
reex |
⊢ ℝ ∈ V |
21 |
20
|
ssex |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → 𝐴 ∈ V ) |
23 |
5 19 22
|
3jca |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ) ) |
26 |
|
ffun |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → Fun 𝐺 ) |
27 |
26
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → Fun 𝐺 ) |
28 |
21
|
anim1ci |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → ( 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐴 ∈ V ) ) |
29 |
|
fex |
⊢ ( ( 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐴 ∈ V ) → 𝐺 ∈ V ) |
30 |
28 29
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → 𝐺 ∈ V ) |
31 |
|
0red |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → 0 ∈ ℝ ) |
32 |
|
frn |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → ran 𝐺 ⊆ ℝ+ ) |
33 |
|
0nrp |
⊢ ¬ 0 ∈ ℝ+ |
34 |
|
id |
⊢ ( ran 𝐺 ⊆ ℝ+ → ran 𝐺 ⊆ ℝ+ ) |
35 |
34
|
ssneld |
⊢ ( ran 𝐺 ⊆ ℝ+ → ( ¬ 0 ∈ ℝ+ → ¬ 0 ∈ ran 𝐺 ) ) |
36 |
33 35
|
mpi |
⊢ ( ran 𝐺 ⊆ ℝ+ → ¬ 0 ∈ ran 𝐺 ) |
37 |
|
df-nel |
⊢ ( 0 ∉ ran 𝐺 ↔ ¬ 0 ∈ ran 𝐺 ) |
38 |
36 37
|
sylibr |
⊢ ( ran 𝐺 ⊆ ℝ+ → 0 ∉ ran 𝐺 ) |
39 |
32 38
|
syl |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → 0 ∉ ran 𝐺 ) |
40 |
39
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → 0 ∉ ran 𝐺 ) |
41 |
|
suppdm |
⊢ ( ( ( Fun 𝐺 ∧ 𝐺 ∈ V ∧ 0 ∈ ℝ ) ∧ 0 ∉ ran 𝐺 ) → ( 𝐺 supp 0 ) = dom 𝐺 ) |
42 |
27 30 31 40 41
|
syl31anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → ( 𝐺 supp 0 ) = dom 𝐺 ) |
43 |
|
fdm |
⊢ ( 𝐺 : 𝐴 ⟶ ℝ+ → dom 𝐺 = 𝐴 ) |
44 |
43
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → dom 𝐺 = 𝐴 ) |
45 |
42 44
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ) → ( 𝐺 supp 0 ) = 𝐴 ) |
46 |
45
|
3adant3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( 𝐺 supp 0 ) = 𝐴 ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → 𝐴 = ( 𝐺 supp 0 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝐴 = ( 𝐺 supp 0 ) ) |
49 |
48
|
eleq2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ ( 𝐺 supp 0 ) ) ) |
50 |
49
|
biimpa |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( 𝐺 supp 0 ) ) |
51 |
|
refdivmptfv |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ) ∧ 𝑦 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) / ( 𝐺 ‘ 𝑦 ) ) ) |
52 |
25 50 51
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) / ( 𝐺 ‘ 𝑦 ) ) ) |
53 |
52
|
breq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ↔ ( ( 𝐹 ‘ 𝑦 ) / ( 𝐺 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
54 |
15 53
|
bitr4d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ) ) |
55 |
54
|
imbi2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( 𝑥 ≤ 𝑦 → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
56 |
55
|
ralbidva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
57 |
56
|
2rexbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
58 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → 𝐴 ⊆ ℝ ) |
59 |
|
ssidd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → 𝐴 ⊆ 𝐴 ) |
60 |
|
elbigo2 |
⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ 𝐴 ) ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
61 |
19 58 5 59 60
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝑚 · ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
62 |
|
refdivmptf |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ) → ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℝ ) |
63 |
23 62
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℝ ) |
64 |
47
|
feq2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( ( 𝐹 /f 𝐺 ) : 𝐴 ⟶ ℝ ↔ ( 𝐹 /f 𝐺 ) : ( 𝐺 supp 0 ) ⟶ ℝ ) ) |
65 |
63 64
|
mpbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( 𝐹 /f 𝐺 ) : 𝐴 ⟶ ℝ ) |
66 |
|
ello12 |
⊢ ( ( ( 𝐹 /f 𝐺 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( 𝐹 /f 𝐺 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
67 |
65 58 66
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( ( 𝐹 /f 𝐺 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( 𝐹 /f 𝐺 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
68 |
57 61 67
|
3bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ+ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( 𝐹 ∈ ( Ο ‘ 𝐺 ) ↔ ( 𝐹 /f 𝐺 ) ∈ ≤𝑂(1) ) ) |