| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ+  →  𝐹 : 𝐴 ⟶ ℝ+ ) | 
						
							| 2 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ+  →  ℝ+  ⊆  ℝ ) | 
						
							| 4 | 1 3 | fssd | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ+  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 8 |  | simplrr | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  𝑚  ∈  ℝ ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  →  𝐺 : 𝐴 ⟶ ℝ+ ) | 
						
							| 10 | 9 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑦 )  ∈  ℝ+ ) | 
						
							| 11 | 10 | rpregt0d | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑦 )  ∈  ℝ  ∧  0  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 12 | 7 8 11 | 3jca | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑚  ∈  ℝ  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  ℝ  ∧  0  <  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 13 |  | ledivmul2 | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑚  ∈  ℝ  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  ℝ  ∧  0  <  ( 𝐺 ‘ 𝑦 ) ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  /  ( 𝐺 ‘ 𝑦 ) )  ≤  𝑚  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 14 | 13 | bicomd | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ℝ  ∧  𝑚  ∈  ℝ  ∧  ( ( 𝐺 ‘ 𝑦 )  ∈  ℝ  ∧  0  <  ( 𝐺 ‘ 𝑦 ) ) )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑦 )  /  ( 𝐺 ‘ 𝑦 ) )  ≤  𝑚 ) ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑦 )  /  ( 𝐺 ‘ 𝑦 ) )  ≤  𝑚 ) ) | 
						
							| 16 |  | id | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  𝐺 : 𝐴 ⟶ ℝ+ ) | 
						
							| 17 | 2 | a1i | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  ℝ+  ⊆  ℝ ) | 
						
							| 18 | 16 17 | fssd | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 20 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 21 | 20 | ssex | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ∈  V ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  𝐴  ∈  V ) | 
						
							| 23 | 5 19 22 | 3jca | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  V ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  →  ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  V ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  V ) ) | 
						
							| 26 |  | ffun | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  Fun  𝐺 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  Fun  𝐺 ) | 
						
							| 28 | 21 | anim1ci | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  ( 𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐴  ∈  V ) ) | 
						
							| 29 |  | fex | ⊢ ( ( 𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐴  ∈  V )  →  𝐺  ∈  V ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  𝐺  ∈  V ) | 
						
							| 31 |  | 0red | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  0  ∈  ℝ ) | 
						
							| 32 |  | frn | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  ran  𝐺  ⊆  ℝ+ ) | 
						
							| 33 |  | 0nrp | ⊢ ¬  0  ∈  ℝ+ | 
						
							| 34 |  | id | ⊢ ( ran  𝐺  ⊆  ℝ+  →  ran  𝐺  ⊆  ℝ+ ) | 
						
							| 35 | 34 | ssneld | ⊢ ( ran  𝐺  ⊆  ℝ+  →  ( ¬  0  ∈  ℝ+  →  ¬  0  ∈  ran  𝐺 ) ) | 
						
							| 36 | 33 35 | mpi | ⊢ ( ran  𝐺  ⊆  ℝ+  →  ¬  0  ∈  ran  𝐺 ) | 
						
							| 37 |  | df-nel | ⊢ ( 0  ∉  ran  𝐺  ↔  ¬  0  ∈  ran  𝐺 ) | 
						
							| 38 | 36 37 | sylibr | ⊢ ( ran  𝐺  ⊆  ℝ+  →  0  ∉  ran  𝐺 ) | 
						
							| 39 | 32 38 | syl | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  0  ∉  ran  𝐺 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  0  ∉  ran  𝐺 ) | 
						
							| 41 |  | suppdm | ⊢ ( ( ( Fun  𝐺  ∧  𝐺  ∈  V  ∧  0  ∈  ℝ )  ∧  0  ∉  ran  𝐺 )  →  ( 𝐺  supp  0 )  =  dom  𝐺 ) | 
						
							| 42 | 27 30 31 40 41 | syl31anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  ( 𝐺  supp  0 )  =  dom  𝐺 ) | 
						
							| 43 |  | fdm | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ+  →  dom  𝐺  =  𝐴 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  dom  𝐺  =  𝐴 ) | 
						
							| 45 | 42 44 | eqtrd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+ )  →  ( 𝐺  supp  0 )  =  𝐴 ) | 
						
							| 46 | 45 | 3adant3 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( 𝐺  supp  0 )  =  𝐴 ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  𝐴  =  ( 𝐺  supp  0 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  →  𝐴  =  ( 𝐺  supp  0 ) ) | 
						
							| 49 | 48 | eleq2d | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  →  ( 𝑦  ∈  𝐴  ↔  𝑦  ∈  ( 𝐺  supp  0 ) ) ) | 
						
							| 50 | 49 | biimpa | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ( 𝐺  supp  0 ) ) | 
						
							| 51 |  | refdivmptfv | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  V )  ∧  𝑦  ∈  ( 𝐺  supp  0 ) )  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑦 )  /  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 52 | 25 50 51 | syl2anc | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑦 )  /  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 53 | 52 | breq1d | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚  ↔  ( ( 𝐹 ‘ 𝑦 )  /  ( 𝐺 ‘ 𝑦 ) )  ≤  𝑚 ) ) | 
						
							| 54 | 15 53 | bitr4d | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) )  ↔  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 55 | 54 | imbi2d | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) )  ↔  ( 𝑥  ≤  𝑦  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 56 | 55 | ralbidva | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 57 | 56 | 2rexbidva | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 58 |  | simp1 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  𝐴  ⊆  ℝ ) | 
						
							| 59 |  | ssidd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  𝐴  ⊆  𝐴 ) | 
						
							| 60 |  | elbigo2 | ⊢ ( ( ( 𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  𝐴 ) )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 61 | 19 58 5 59 60 | syl22anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝑚  ·  ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 62 |  | refdivmptf | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  V )  →  ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℝ ) | 
						
							| 63 | 23 62 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℝ ) | 
						
							| 64 | 47 | feq2d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( ( 𝐹  /f  𝐺 ) : 𝐴 ⟶ ℝ  ↔  ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℝ ) ) | 
						
							| 65 | 63 64 | mpbird | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( 𝐹  /f  𝐺 ) : 𝐴 ⟶ ℝ ) | 
						
							| 66 |  | ello12 | ⊢ ( ( ( 𝐹  /f  𝐺 ) : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  →  ( ( 𝐹  /f  𝐺 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 67 | 65 58 66 | syl2anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( ( 𝐹  /f  𝐺 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( ( 𝐹  /f  𝐺 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 68 | 57 61 67 | 3bitr4d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ+  ∧  𝐹 : 𝐴 ⟶ ℝ+ )  →  ( 𝐹  ∈  ( Ο ‘ 𝐺 )  ↔  ( 𝐹  /f  𝐺 )  ∈  ≤𝑂(1) ) ) |