| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 2 |  | suppssdm | ⊢ ( 𝐺  supp  0 )  ⊆  dom  𝐺 | 
						
							| 3 |  | fdm | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  dom  𝐺  =  𝐴 ) | 
						
							| 4 | 2 3 | sseqtrid | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  ( 𝐺  supp  0 )  ⊆  𝐴 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  supp  0 )  ⊆  𝐴 ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 7 | 1 6 | ffvelcdmd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 9 | 8 6 | ffvelcdmd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 10 |  | ffn | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  𝐺  Fn  𝐴 ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  𝐺  Fn  𝐴 ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 13 |  | 0red | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  0  ∈  ℝ ) | 
						
							| 14 |  | elsuppfn | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  0  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑥 )  ≠  0 ) ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑥 )  ≠  0 ) ) ) | 
						
							| 16 | 15 | simplbda | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  ( 𝐺 ‘ 𝑥 )  ≠  0 ) | 
						
							| 17 | 7 9 16 | redivcld | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 18 | 17 | fmpttd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) : ( 𝐺  supp  0 ) ⟶ ℝ ) | 
						
							| 19 |  | id | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 20 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  ℝ  ⊆  ℂ ) | 
						
							| 22 | 19 21 | fssd | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 23 |  | id | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  𝐺 : 𝐴 ⟶ ℝ ) | 
						
							| 24 | 20 | a1i | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  ℝ  ⊆  ℂ ) | 
						
							| 25 | 23 24 | fssd | ⊢ ( 𝐺 : 𝐴 ⟶ ℝ  →  𝐺 : 𝐴 ⟶ ℂ ) | 
						
							| 26 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 27 | 22 25 26 | 3anim123i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 ) ) | 
						
							| 28 |  | fdivmpt | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 30 | 29 | feq1d | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℝ  ↔  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) : ( 𝐺  supp  0 ) ⟶ ℝ ) ) | 
						
							| 31 | 18 30 | mpbird | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐺 : 𝐴 ⟶ ℝ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 ) : ( 𝐺  supp  0 ) ⟶ ℝ ) |