Step |
Hyp |
Ref |
Expression |
1 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) |
3 |
|
fex |
⊢ ( ( 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ V ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ V ) |
5 |
|
fdivval |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 /f 𝐺 ) = ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ) |
6 |
|
offres |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) = ( ( 𝐹 ↾ ( 𝐺 supp 0 ) ) ∘f / ( 𝐺 ↾ ( 𝐺 supp 0 ) ) ) ) |
7 |
5 6
|
eqtrd |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 /f 𝐺 ) = ( ( 𝐹 ↾ ( 𝐺 supp 0 ) ) ∘f / ( 𝐺 ↾ ( 𝐺 supp 0 ) ) ) ) |
8 |
2 4 7
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) = ( ( 𝐹 ↾ ( 𝐺 supp 0 ) ) ∘f / ( 𝐺 ↾ ( 𝐺 supp 0 ) ) ) ) |
9 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐹 Fn 𝐴 ) |
11 |
|
suppssdm |
⊢ ( 𝐺 supp 0 ) ⊆ dom 𝐺 |
12 |
|
fdm |
⊢ ( 𝐺 : 𝐴 ⟶ ℂ → dom 𝐺 = 𝐴 ) |
13 |
12
|
eqcomd |
⊢ ( 𝐺 : 𝐴 ⟶ ℂ → 𝐴 = dom 𝐺 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐴 = dom 𝐺 ) |
15 |
11 14
|
sseqtrrid |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 supp 0 ) ⊆ 𝐴 ) |
16 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐺 supp 0 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐺 supp 0 ) ) Fn ( 𝐺 supp 0 ) ) |
17 |
10 15 16
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾ ( 𝐺 supp 0 ) ) Fn ( 𝐺 supp 0 ) ) |
18 |
|
ffn |
⊢ ( 𝐺 : 𝐴 ⟶ ℂ → 𝐺 Fn 𝐴 ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → 𝐺 Fn 𝐴 ) |
20 |
|
fnssres |
⊢ ( ( 𝐺 Fn 𝐴 ∧ ( 𝐺 supp 0 ) ⊆ 𝐴 ) → ( 𝐺 ↾ ( 𝐺 supp 0 ) ) Fn ( 𝐺 supp 0 ) ) |
21 |
19 15 20
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 ↾ ( 𝐺 supp 0 ) ) Fn ( 𝐺 supp 0 ) ) |
22 |
|
ovexd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 supp 0 ) ∈ V ) |
23 |
|
inidm |
⊢ ( ( 𝐺 supp 0 ) ∩ ( 𝐺 supp 0 ) ) = ( 𝐺 supp 0 ) |
24 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐺 supp 0 ) → ( ( 𝐹 ↾ ( 𝐺 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐹 ↾ ( 𝐺 supp 0 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
26 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐺 supp 0 ) → ( ( 𝐺 ↾ ( 𝐺 supp 0 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐺 ↾ ( 𝐺 supp 0 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
28 |
17 21 22 22 23 25 27
|
offval |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ↾ ( 𝐺 supp 0 ) ) ∘f / ( 𝐺 ↾ ( 𝐺 supp 0 ) ) ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
29 |
8 28
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐺 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 /f 𝐺 ) = ( 𝑥 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |