| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fex | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐹  ∈  V ) | 
						
							| 2 | 1 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐹  ∈  V ) | 
						
							| 3 |  | fex | ⊢ ( ( 𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 5 |  | fdivval | ⊢ ( ( 𝐹  ∈  V  ∧  𝐺  ∈  V )  →  ( 𝐹  /f  𝐺 )  =  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) ) ) | 
						
							| 6 |  | offres | ⊢ ( ( 𝐹  ∈  V  ∧  𝐺  ∈  V )  →  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) )  =  ( ( 𝐹  ↾  ( 𝐺  supp  0 ) )  ∘f   /  ( 𝐺  ↾  ( 𝐺  supp  0 ) ) ) ) | 
						
							| 7 | 5 6 | eqtrd | ⊢ ( ( 𝐹  ∈  V  ∧  𝐺  ∈  V )  →  ( 𝐹  /f  𝐺 )  =  ( ( 𝐹  ↾  ( 𝐺  supp  0 ) )  ∘f   /  ( 𝐺  ↾  ( 𝐺  supp  0 ) ) ) ) | 
						
							| 8 | 2 4 7 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  =  ( ( 𝐹  ↾  ( 𝐺  supp  0 ) )  ∘f   /  ( 𝐺  ↾  ( 𝐺  supp  0 ) ) ) ) | 
						
							| 9 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ  →  𝐹  Fn  𝐴 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐹  Fn  𝐴 ) | 
						
							| 11 |  | suppssdm | ⊢ ( 𝐺  supp  0 )  ⊆  dom  𝐺 | 
						
							| 12 |  | fdm | ⊢ ( 𝐺 : 𝐴 ⟶ ℂ  →  dom  𝐺  =  𝐴 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝐺 : 𝐴 ⟶ ℂ  →  𝐴  =  dom  𝐺 ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐴  =  dom  𝐺 ) | 
						
							| 15 | 11 14 | sseqtrrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  supp  0 )  ⊆  𝐴 ) | 
						
							| 16 |  | fnssres | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐺  supp  0 )  ⊆  𝐴 )  →  ( 𝐹  ↾  ( 𝐺  supp  0 ) )  Fn  ( 𝐺  supp  0 ) ) | 
						
							| 17 | 10 15 16 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  ↾  ( 𝐺  supp  0 ) )  Fn  ( 𝐺  supp  0 ) ) | 
						
							| 18 |  | ffn | ⊢ ( 𝐺 : 𝐴 ⟶ ℂ  →  𝐺  Fn  𝐴 ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  𝐺  Fn  𝐴 ) | 
						
							| 20 |  | fnssres | ⊢ ( ( 𝐺  Fn  𝐴  ∧  ( 𝐺  supp  0 )  ⊆  𝐴 )  →  ( 𝐺  ↾  ( 𝐺  supp  0 ) )  Fn  ( 𝐺  supp  0 ) ) | 
						
							| 21 | 19 15 20 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  ↾  ( 𝐺  supp  0 ) )  Fn  ( 𝐺  supp  0 ) ) | 
						
							| 22 |  | ovexd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  supp  0 )  ∈  V ) | 
						
							| 23 |  | inidm | ⊢ ( ( 𝐺  supp  0 )  ∩  ( 𝐺  supp  0 ) )  =  ( 𝐺  supp  0 ) | 
						
							| 24 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝐺  supp  0 )  →  ( ( 𝐹  ↾  ( 𝐺  supp  0 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  ( ( 𝐹  ↾  ( 𝐺  supp  0 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 26 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝐺  supp  0 )  →  ( ( 𝐺  ↾  ( 𝐺  supp  0 ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  ∧  𝑥  ∈  ( 𝐺  supp  0 ) )  →  ( ( 𝐺  ↾  ( 𝐺  supp  0 ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 28 | 17 21 22 22 23 25 27 | offval | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐹  ↾  ( 𝐺  supp  0 ) )  ∘f   /  ( 𝐺  ↾  ( 𝐺  supp  0 ) ) )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 8 28 | eqtrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐺 : 𝐴 ⟶ ℂ  ∧  𝐴  ∈  𝑉 )  →  ( 𝐹  /f  𝐺 )  =  ( 𝑥  ∈  ( 𝐺  supp  0 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) |