Step |
Hyp |
Ref |
Expression |
1 |
|
df-fdiv |
⊢ /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) ) |
3 |
|
oveq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∘f / 𝑔 ) = ( 𝐹 ∘f / 𝐺 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 supp 0 ) = ( 𝐺 supp 0 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 supp 0 ) = ( 𝐺 supp 0 ) ) |
6 |
3 5
|
reseq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) = ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ( 𝑓 ∘f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) = ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ) |
8 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐹 ∈ V ) |
10 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
11 |
10
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐺 ∈ V ) |
12 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) |
13 |
|
offval3 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘f / 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
14 |
13
|
funeqd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( Fun ( 𝐹 ∘f / 𝐺 ) ↔ Fun ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
15 |
12 14
|
mpbiri |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → Fun ( 𝐹 ∘f / 𝐺 ) ) |
16 |
|
ovex |
⊢ ( 𝐺 supp 0 ) ∈ V |
17 |
|
resfunexg |
⊢ ( ( Fun ( 𝐹 ∘f / 𝐺 ) ∧ ( 𝐺 supp 0 ) ∈ V ) → ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ∈ V ) |
18 |
15 16 17
|
sylancl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ∈ V ) |
19 |
2 7 9 11 18
|
ovmpod |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 /f 𝐺 ) = ( ( 𝐹 ∘f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ) |