| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-fdiv | ⊢  /f   =  ( 𝑓  ∈  V ,  𝑔  ∈  V  ↦  ( ( 𝑓  ∘f   /  𝑔 )  ↾  ( 𝑔  supp  0 ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →   /f   =  ( 𝑓  ∈  V ,  𝑔  ∈  V  ↦  ( ( 𝑓  ∘f   /  𝑔 )  ↾  ( 𝑔  supp  0 ) ) ) ) | 
						
							| 3 |  | oveq12 | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( 𝑓  ∘f   /  𝑔 )  =  ( 𝐹  ∘f   /  𝐺 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  supp  0 )  =  ( 𝐺  supp  0 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( 𝑔  supp  0 )  =  ( 𝐺  supp  0 ) ) | 
						
							| 6 | 3 5 | reseq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 𝑓  ∘f   /  𝑔 )  ↾  ( 𝑔  supp  0 ) )  =  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( ( 𝑓  ∘f   /  𝑔 )  ↾  ( 𝑔  supp  0 ) )  =  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) ) ) | 
						
							| 8 |  | elex | ⊢ ( 𝐹  ∈  𝑉  →  𝐹  ∈  V ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  𝐹  ∈  V ) | 
						
							| 10 |  | elex | ⊢ ( 𝐺  ∈  𝑊  →  𝐺  ∈  V ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  𝐺  ∈  V ) | 
						
							| 12 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 13 |  | offval3 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( 𝐹  ∘f   /  𝐺 )  =  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 13 | funeqd | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( Fun  ( 𝐹  ∘f   /  𝐺 )  ↔  Fun  ( 𝑥  ∈  ( dom  𝐹  ∩  dom  𝐺 )  ↦  ( ( 𝐹 ‘ 𝑥 )  /  ( 𝐺 ‘ 𝑥 ) ) ) ) ) | 
						
							| 15 | 12 14 | mpbiri | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  Fun  ( 𝐹  ∘f   /  𝐺 ) ) | 
						
							| 16 |  | ovex | ⊢ ( 𝐺  supp  0 )  ∈  V | 
						
							| 17 |  | resfunexg | ⊢ ( ( Fun  ( 𝐹  ∘f   /  𝐺 )  ∧  ( 𝐺  supp  0 )  ∈  V )  →  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) )  ∈  V ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) )  ∈  V ) | 
						
							| 19 | 2 7 9 11 18 | ovmpod | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐺  ∈  𝑊 )  →  ( 𝐹  /f  𝐺 )  =  ( ( 𝐹  ∘f   /  𝐺 )  ↾  ( 𝐺  supp  0 ) ) ) |