Metamath Proof Explorer


Theorem fdivval

Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion fdivval ( ( 𝐹𝑉𝐺𝑊 ) → ( 𝐹 /f 𝐺 ) = ( ( 𝐹f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) )

Proof

Step Hyp Ref Expression
1 df-fdiv /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) )
2 1 a1i ( ( 𝐹𝑉𝐺𝑊 ) → /f = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) ) )
3 oveq12 ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( 𝑓f / 𝑔 ) = ( 𝐹f / 𝐺 ) )
4 oveq1 ( 𝑔 = 𝐺 → ( 𝑔 supp 0 ) = ( 𝐺 supp 0 ) )
5 4 adantl ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( 𝑔 supp 0 ) = ( 𝐺 supp 0 ) )
6 3 5 reseq12d ( ( 𝑓 = 𝐹𝑔 = 𝐺 ) → ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) = ( ( 𝐹f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) )
7 6 adantl ( ( ( 𝐹𝑉𝐺𝑊 ) ∧ ( 𝑓 = 𝐹𝑔 = 𝐺 ) ) → ( ( 𝑓f / 𝑔 ) ↾ ( 𝑔 supp 0 ) ) = ( ( 𝐹f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) )
8 elex ( 𝐹𝑉𝐹 ∈ V )
9 8 adantr ( ( 𝐹𝑉𝐺𝑊 ) → 𝐹 ∈ V )
10 elex ( 𝐺𝑊𝐺 ∈ V )
11 10 adantl ( ( 𝐹𝑉𝐺𝑊 ) → 𝐺 ∈ V )
12 funmpt Fun ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) )
13 offval3 ( ( 𝐹𝑉𝐺𝑊 ) → ( 𝐹f / 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) )
14 13 funeqd ( ( 𝐹𝑉𝐺𝑊 ) → ( Fun ( 𝐹f / 𝐺 ) ↔ Fun ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹𝑥 ) / ( 𝐺𝑥 ) ) ) ) )
15 12 14 mpbiri ( ( 𝐹𝑉𝐺𝑊 ) → Fun ( 𝐹f / 𝐺 ) )
16 ovex ( 𝐺 supp 0 ) ∈ V
17 resfunexg ( ( Fun ( 𝐹f / 𝐺 ) ∧ ( 𝐺 supp 0 ) ∈ V ) → ( ( 𝐹f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ∈ V )
18 15 16 17 sylancl ( ( 𝐹𝑉𝐺𝑊 ) → ( ( 𝐹f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) ∈ V )
19 2 7 9 11 18 ovmpod ( ( 𝐹𝑉𝐺𝑊 ) → ( 𝐹 /f 𝐺 ) = ( ( 𝐹f / 𝐺 ) ↾ ( 𝐺 supp 0 ) ) )