Metamath Proof Explorer


Theorem fdivval

Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion fdivval FVGWF/f G = F÷fGsupp0G

Proof

Step Hyp Ref Expression
1 df-fdiv /f = fV,gVf÷fgsupp0g
2 1 a1i FVGW/f = fV,gVf÷fgsupp0g
3 oveq12 f=Fg=Gf÷fg=F÷fG
4 oveq1 g=Ggsupp0=Gsupp0
5 4 adantl f=Fg=Ggsupp0=Gsupp0
6 3 5 reseq12d f=Fg=Gf÷fgsupp0g=F÷fGsupp0G
7 6 adantl FVGWf=Fg=Gf÷fgsupp0g=F÷fGsupp0G
8 elex FVFV
9 8 adantr FVGWFV
10 elex GWGV
11 10 adantl FVGWGV
12 funmpt FunxdomFdomGFxGx
13 offval3 FVGWF÷fG=xdomFdomGFxGx
14 13 funeqd FVGWFunF÷fGFunxdomFdomGFxGx
15 12 14 mpbiri FVGWFunF÷fG
16 ovex Gsupp0V
17 resfunexg FunF÷fGGsupp0VF÷fGsupp0GV
18 15 16 17 sylancl FVGWF÷fGsupp0GV
19 2 7 9 11 18 ovmpod FVGWF/f G = F÷fGsupp0G