Metamath Proof Explorer


Definition df-fdiv

Description: Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion df-fdiv / f = f V , g V f ÷ f g supp 0 g

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfdiv class / f
1 vf setvar f
2 cvv class V
3 vg setvar g
4 1 cv setvar f
5 cdiv class ÷
6 5 cof class f ÷
7 3 cv setvar g
8 4 7 6 co class f ÷ f g
9 csupp class supp
10 cc0 class 0
11 7 10 9 co class supp 0 g
12 8 11 cres class f ÷ f g supp 0 g
13 1 3 2 2 12 cmpo class f V , g V f ÷ f g supp 0 g
14 0 13 wceq wff / f = f V , g V f ÷ f g supp 0 g