Description: Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-fdiv | |- /_f = ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cfdiv | |- /_f |
|
1 | vf | |- f |
|
2 | cvv | |- _V |
|
3 | vg | |- g |
|
4 | 1 | cv | |- f |
5 | cdiv | |- / |
|
6 | 5 | cof | |- oF / |
7 | 3 | cv | |- g |
8 | 4 7 6 | co | |- ( f oF / g ) |
9 | csupp | |- supp |
|
10 | cc0 | |- 0 |
|
11 | 7 10 9 | co | |- ( g supp 0 ) |
12 | 8 11 | cres | |- ( ( f oF / g ) |` ( g supp 0 ) ) |
13 | 1 3 2 2 12 | cmpo | |- ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) |
14 | 0 13 | wceq | |- /_f = ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) |