Step |
Hyp |
Ref |
Expression |
1 |
|
df-fdiv |
|- /_f = ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) |
2 |
1
|
a1i |
|- ( ( F e. V /\ G e. W ) -> /_f = ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) ) |
3 |
|
oveq12 |
|- ( ( f = F /\ g = G ) -> ( f oF / g ) = ( F oF / G ) ) |
4 |
|
oveq1 |
|- ( g = G -> ( g supp 0 ) = ( G supp 0 ) ) |
5 |
4
|
adantl |
|- ( ( f = F /\ g = G ) -> ( g supp 0 ) = ( G supp 0 ) ) |
6 |
3 5
|
reseq12d |
|- ( ( f = F /\ g = G ) -> ( ( f oF / g ) |` ( g supp 0 ) ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) |
7 |
6
|
adantl |
|- ( ( ( F e. V /\ G e. W ) /\ ( f = F /\ g = G ) ) -> ( ( f oF / g ) |` ( g supp 0 ) ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) |
8 |
|
elex |
|- ( F e. V -> F e. _V ) |
9 |
8
|
adantr |
|- ( ( F e. V /\ G e. W ) -> F e. _V ) |
10 |
|
elex |
|- ( G e. W -> G e. _V ) |
11 |
10
|
adantl |
|- ( ( F e. V /\ G e. W ) -> G e. _V ) |
12 |
|
funmpt |
|- Fun ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) / ( G ` x ) ) ) |
13 |
|
offval3 |
|- ( ( F e. V /\ G e. W ) -> ( F oF / G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
14 |
13
|
funeqd |
|- ( ( F e. V /\ G e. W ) -> ( Fun ( F oF / G ) <-> Fun ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) ) |
15 |
12 14
|
mpbiri |
|- ( ( F e. V /\ G e. W ) -> Fun ( F oF / G ) ) |
16 |
|
ovex |
|- ( G supp 0 ) e. _V |
17 |
|
resfunexg |
|- ( ( Fun ( F oF / G ) /\ ( G supp 0 ) e. _V ) -> ( ( F oF / G ) |` ( G supp 0 ) ) e. _V ) |
18 |
15 16 17
|
sylancl |
|- ( ( F e. V /\ G e. W ) -> ( ( F oF / G ) |` ( G supp 0 ) ) e. _V ) |
19 |
2 7 9 11 18
|
ovmpod |
|- ( ( F e. V /\ G e. W ) -> ( F /_f G ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) |