| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-fdiv |  |-  /_f = ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( F e. V /\ G e. W ) -> /_f = ( f e. _V , g e. _V |-> ( ( f oF / g ) |` ( g supp 0 ) ) ) ) | 
						
							| 3 |  | oveq12 |  |-  ( ( f = F /\ g = G ) -> ( f oF / g ) = ( F oF / G ) ) | 
						
							| 4 |  | oveq1 |  |-  ( g = G -> ( g supp 0 ) = ( G supp 0 ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( f = F /\ g = G ) -> ( g supp 0 ) = ( G supp 0 ) ) | 
						
							| 6 | 3 5 | reseq12d |  |-  ( ( f = F /\ g = G ) -> ( ( f oF / g ) |` ( g supp 0 ) ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( F e. V /\ G e. W ) /\ ( f = F /\ g = G ) ) -> ( ( f oF / g ) |` ( g supp 0 ) ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) | 
						
							| 8 |  | elex |  |-  ( F e. V -> F e. _V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F e. V /\ G e. W ) -> F e. _V ) | 
						
							| 10 |  | elex |  |-  ( G e. W -> G e. _V ) | 
						
							| 11 | 10 | adantl |  |-  ( ( F e. V /\ G e. W ) -> G e. _V ) | 
						
							| 12 |  | funmpt |  |-  Fun ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) / ( G ` x ) ) ) | 
						
							| 13 |  | offval3 |  |-  ( ( F e. V /\ G e. W ) -> ( F oF / G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 14 | 13 | funeqd |  |-  ( ( F e. V /\ G e. W ) -> ( Fun ( F oF / G ) <-> Fun ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) ) | 
						
							| 15 | 12 14 | mpbiri |  |-  ( ( F e. V /\ G e. W ) -> Fun ( F oF / G ) ) | 
						
							| 16 |  | ovex |  |-  ( G supp 0 ) e. _V | 
						
							| 17 |  | resfunexg |  |-  ( ( Fun ( F oF / G ) /\ ( G supp 0 ) e. _V ) -> ( ( F oF / G ) |` ( G supp 0 ) ) e. _V ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ( F e. V /\ G e. W ) -> ( ( F oF / G ) |` ( G supp 0 ) ) e. _V ) | 
						
							| 19 | 2 7 9 11 18 | ovmpod |  |-  ( ( F e. V /\ G e. W ) -> ( F /_f G ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) |