Step |
Hyp |
Ref |
Expression |
1 |
|
fex |
|- ( ( F : A --> CC /\ A e. V ) -> F e. _V ) |
2 |
1
|
3adant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> F e. _V ) |
3 |
|
fex |
|- ( ( G : A --> CC /\ A e. V ) -> G e. _V ) |
4 |
3
|
3adant1 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G e. _V ) |
5 |
|
fdivval |
|- ( ( F e. _V /\ G e. _V ) -> ( F /_f G ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) |
6 |
|
offres |
|- ( ( F e. _V /\ G e. _V ) -> ( ( F oF / G ) |` ( G supp 0 ) ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) |
7 |
5 6
|
eqtrd |
|- ( ( F e. _V /\ G e. _V ) -> ( F /_f G ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) |
8 |
2 4 7
|
syl2anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) |
9 |
|
ffn |
|- ( F : A --> CC -> F Fn A ) |
10 |
9
|
3ad2ant1 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> F Fn A ) |
11 |
|
suppssdm |
|- ( G supp 0 ) C_ dom G |
12 |
|
fdm |
|- ( G : A --> CC -> dom G = A ) |
13 |
12
|
eqcomd |
|- ( G : A --> CC -> A = dom G ) |
14 |
13
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A = dom G ) |
15 |
11 14
|
sseqtrrid |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) |
16 |
|
fnssres |
|- ( ( F Fn A /\ ( G supp 0 ) C_ A ) -> ( F |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
17 |
10 15 16
|
syl2anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
18 |
|
ffn |
|- ( G : A --> CC -> G Fn A ) |
19 |
18
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G Fn A ) |
20 |
|
fnssres |
|- ( ( G Fn A /\ ( G supp 0 ) C_ A ) -> ( G |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
21 |
19 15 20
|
syl2anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
22 |
|
ovexd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) e. _V ) |
23 |
|
inidm |
|- ( ( G supp 0 ) i^i ( G supp 0 ) ) = ( G supp 0 ) |
24 |
|
fvres |
|- ( x e. ( G supp 0 ) -> ( ( F |` ( G supp 0 ) ) ` x ) = ( F ` x ) ) |
25 |
24
|
adantl |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F |` ( G supp 0 ) ) ` x ) = ( F ` x ) ) |
26 |
|
fvres |
|- ( x e. ( G supp 0 ) -> ( ( G |` ( G supp 0 ) ) ` x ) = ( G ` x ) ) |
27 |
26
|
adantl |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( G |` ( G supp 0 ) ) ` x ) = ( G ` x ) ) |
28 |
17 21 22 22 23 25 27
|
offval |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
29 |
8 28
|
eqtrd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |