| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fex |  |-  ( ( F : A --> CC /\ A e. V ) -> F e. _V ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> F e. _V ) | 
						
							| 3 |  | fex |  |-  ( ( G : A --> CC /\ A e. V ) -> G e. _V ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G e. _V ) | 
						
							| 5 |  | fdivval |  |-  ( ( F e. _V /\ G e. _V ) -> ( F /_f G ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) | 
						
							| 6 |  | offres |  |-  ( ( F e. _V /\ G e. _V ) -> ( ( F oF / G ) |` ( G supp 0 ) ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) | 
						
							| 7 | 5 6 | eqtrd |  |-  ( ( F e. _V /\ G e. _V ) -> ( F /_f G ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) | 
						
							| 8 | 2 4 7 | syl2anc |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) | 
						
							| 9 |  | ffn |  |-  ( F : A --> CC -> F Fn A ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> F Fn A ) | 
						
							| 11 |  | suppssdm |  |-  ( G supp 0 ) C_ dom G | 
						
							| 12 |  | fdm |  |-  ( G : A --> CC -> dom G = A ) | 
						
							| 13 | 12 | eqcomd |  |-  ( G : A --> CC -> A = dom G ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A = dom G ) | 
						
							| 15 | 11 14 | sseqtrrid |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) | 
						
							| 16 |  | fnssres |  |-  ( ( F Fn A /\ ( G supp 0 ) C_ A ) -> ( F |` ( G supp 0 ) ) Fn ( G supp 0 ) ) | 
						
							| 17 | 10 15 16 | syl2anc |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F |` ( G supp 0 ) ) Fn ( G supp 0 ) ) | 
						
							| 18 |  | ffn |  |-  ( G : A --> CC -> G Fn A ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G Fn A ) | 
						
							| 20 |  | fnssres |  |-  ( ( G Fn A /\ ( G supp 0 ) C_ A ) -> ( G |` ( G supp 0 ) ) Fn ( G supp 0 ) ) | 
						
							| 21 | 19 15 20 | syl2anc |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G |` ( G supp 0 ) ) Fn ( G supp 0 ) ) | 
						
							| 22 |  | ovexd |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) e. _V ) | 
						
							| 23 |  | inidm |  |-  ( ( G supp 0 ) i^i ( G supp 0 ) ) = ( G supp 0 ) | 
						
							| 24 |  | fvres |  |-  ( x e. ( G supp 0 ) -> ( ( F |` ( G supp 0 ) ) ` x ) = ( F ` x ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F |` ( G supp 0 ) ) ` x ) = ( F ` x ) ) | 
						
							| 26 |  | fvres |  |-  ( x e. ( G supp 0 ) -> ( ( G |` ( G supp 0 ) ) ` x ) = ( G ` x ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( G |` ( G supp 0 ) ) ` x ) = ( G ` x ) ) | 
						
							| 28 | 17 21 22 22 23 25 27 | offval |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) | 
						
							| 29 | 8 28 | eqtrd |  |-  ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |