| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fex |
|- ( ( F : A --> CC /\ A e. V ) -> F e. _V ) |
| 2 |
1
|
3adant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> F e. _V ) |
| 3 |
|
fex |
|- ( ( G : A --> CC /\ A e. V ) -> G e. _V ) |
| 4 |
3
|
3adant1 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G e. _V ) |
| 5 |
|
fdivval |
|- ( ( F e. _V /\ G e. _V ) -> ( F /_f G ) = ( ( F oF / G ) |` ( G supp 0 ) ) ) |
| 6 |
|
offres |
|- ( ( F e. _V /\ G e. _V ) -> ( ( F oF / G ) |` ( G supp 0 ) ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) |
| 7 |
5 6
|
eqtrd |
|- ( ( F e. _V /\ G e. _V ) -> ( F /_f G ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) |
| 8 |
2 4 7
|
syl2anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) ) |
| 9 |
|
ffn |
|- ( F : A --> CC -> F Fn A ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> F Fn A ) |
| 11 |
|
suppssdm |
|- ( G supp 0 ) C_ dom G |
| 12 |
|
fdm |
|- ( G : A --> CC -> dom G = A ) |
| 13 |
12
|
eqcomd |
|- ( G : A --> CC -> A = dom G ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> A = dom G ) |
| 15 |
11 14
|
sseqtrrid |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) C_ A ) |
| 16 |
|
fnssres |
|- ( ( F Fn A /\ ( G supp 0 ) C_ A ) -> ( F |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
| 17 |
10 15 16
|
syl2anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
| 18 |
|
ffn |
|- ( G : A --> CC -> G Fn A ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> G Fn A ) |
| 20 |
|
fnssres |
|- ( ( G Fn A /\ ( G supp 0 ) C_ A ) -> ( G |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
| 21 |
19 15 20
|
syl2anc |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G |` ( G supp 0 ) ) Fn ( G supp 0 ) ) |
| 22 |
|
ovexd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( G supp 0 ) e. _V ) |
| 23 |
|
inidm |
|- ( ( G supp 0 ) i^i ( G supp 0 ) ) = ( G supp 0 ) |
| 24 |
|
fvres |
|- ( x e. ( G supp 0 ) -> ( ( F |` ( G supp 0 ) ) ` x ) = ( F ` x ) ) |
| 25 |
24
|
adantl |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( F |` ( G supp 0 ) ) ` x ) = ( F ` x ) ) |
| 26 |
|
fvres |
|- ( x e. ( G supp 0 ) -> ( ( G |` ( G supp 0 ) ) ` x ) = ( G ` x ) ) |
| 27 |
26
|
adantl |
|- ( ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) /\ x e. ( G supp 0 ) ) -> ( ( G |` ( G supp 0 ) ) ` x ) = ( G ` x ) ) |
| 28 |
17 21 22 22 23 25 27
|
offval |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( ( F |` ( G supp 0 ) ) oF / ( G |` ( G supp 0 ) ) ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
| 29 |
8 28
|
eqtrd |
|- ( ( F : A --> CC /\ G : A --> CC /\ A e. V ) -> ( F /_f G ) = ( x e. ( G supp 0 ) |-> ( ( F ` x ) / ( G ` x ) ) ) ) |